مطالعه تاثیر فرایند اکستروژن متناوبی فشاری پروفیل سبک غیرمتقارن (NCTS-CEC) در تولید تیرهای با مقاطع غیرمتقارن ریزدانه با استحکام بالا از جنس منیزیم AM60

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه ساخت و تولید، دانشگاه آزاد اسلامی، واحد تبریز، تبریز، ایران

2 دانشجوی کارشناسی ارشد، گروه ساخت و تولید، دانشگاه آزاد اسلامی، واحد تبریز، تبریز، ایران

10.22034/ijme.2023.407082.1808

چکیده

در تحقیق حاضر، روش اکستروژن متناوبی فشاری پروفیل سبک غیرمتقارن (NCTS-CEC) به عنوان روشی جدید جهت تغییر شکل پلاستیک شدید تیرهای با مقطع غیر­متقارن مورد مطالعه قرار گرفته است. در این روش کل طول تیر غیر­متقارن با پروفیل L شکل از یک قالب گلویی عبور کرده و تحت تاثیر تغییر­ شکل پلاستیک شدید قرار می­‌گیرد. با انجام پاس­‌های بیشتر فرایندی می­‌توان کرنش پلاستیک تجمعی دلخواه با مقادیر بالاتر را به ماده اعمال نمود. در بخش اول مطالعات تجربی، نمونه‌­های پروفیلی با مقطع L از جنس منیزیم AM60 آماده­‌سازی شده و در مجموعه قالب قرار گرفت و توسط سنبه­‌ای در سیکل‌­های مختلف تحت تاثیر تغییر شکل پلاستیک قرار گرفت. تحول ریز­ساختاری نمونه‌­های تغییر­شکل یافته توسط میکروسکوپ نوری و الکترونی عبوری نشان داد که بیشترین تغییرات اندازه دانه در انتهای فرایند و پس از اعمال دو پاس از مقدار اولیه 75 میکرون به مقدار 5 میکرون اتفاق افتاد. در ادامه، بررسی­‌های خصوصیات مکانیکی و میکرو­سختی‌­سنجی بر روی نمونه­‌های اولیه و تغییر شکل یافته حاکی از افزایش استحکام تسلیم و حداکثر از مقادیر اولیه به ترتیب 5/89  و 3/227 به 9/136 و 7/286 مگاپاسکال و همچنین افزایش میکرو­سختی ویکرز از مقدار اولیه 54 به مقدار 89 ویکرز می‌باشد. از طرف دیگر مقدار انعطاف­‌پذیری نمونه­‌های تغییر­ شکل یافته به دلیل تحول ریزساختاری و خرد شدن فازهای یوتکتیک و کاهش اندازه دانه از 3/11% به 4/14% افزایش یافته است. روش شبیه­‌سازی عددی اتومات سلولی جهت پیش‌­بینی تحول ریز­ساختاری نمونه­‌های تغییر­ شکل­ یافته به کار گرفته شد. نتایج به دست آمده حاکی از مطابقت قابل قبول روش شبیه‌­سازی و آزمایشات تجربی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the cyclic extrusion–compression in production of high stringed and ultrafine grained AM60 Magnesium noncircular thin section beams

نویسندگان [English]

  • Hossein Jafarzadeh 1
  • Karim Alizadi Balegh 2
1 Assistant Professor, Department of Manufacturing Engineering, Islamic Azad University, Tabriz branch, Tabriz, Iran
2 MSc Student, Department of Manufacturing Engineering, Islamic Azad University, Tabriz branch, Tabriz, Iran
چکیده [English]

In this study a new severe plastic deformation method named noncircular thin section cyclic extrusion–compression (NCTS-CEC) is proposed for processing ultrafine-grained noncircular thin section beams. In this technique, the total length of noncircular L shaped section is passed through a neck zone and experiences severe plastic strains. Therefore, the high amount of accumulated plastic strain could be imposed by repeating the number of process cycles. In the first section of study, the AM60 Magnesium alloy is inserted into die and deformed by punch in different cycles. The observations by optical and SEM microscopes showed the formation of about 5 μm fine grains from the initial value of 75 μm after processing by two cycles of the NCTS-CEC. Also, the mechanical properties including yield strength, UTS, elongation and microhardness are evaluated at different cycles of NCTS-CEC processing. The obtained results showed the increase of yield strength and UTS to 136.9MPa and 286.7 MPa from the initial values of 89.5 MPa and 227.3 MPa, respectively. The Vickers microhardness is increased to 89HV from the initial value of 54HV at the end of second cycle. Also, the elongation of processed sample is increased to 14.4% from 11.3% due to texture evolution, grain refinement and breakage of brittle eutectic phases at the end of second cycle. The cellular automaton (CA) finite element method was implemented to simulate the process to predict the microstructure evolution of AM60. The obtained results from cellular automaton finite element (CAFE) and experimental methods were in good agreement.

کلیدواژه‌ها [English]

  • Cyclic Extrusion and Compression
  • AM60 Magnesium Alloy
  • FEM
  • Cellular Automaton (CA)
[1]  Chen Q, Shu D, Hu C, Zhao Z, Yuan B. Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure. Materials Science and Engineering: A, 2012. 541: p. 98-104. doi: 10.1016/j.msea.2012.02.009
[2]  Faraji G, Jafarzadeh H, Jeong H. J, Mashhadi M. M, Kim H. S. Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy. Materials & Design. 2012. 35: p. 251-258. doi: 10.1016/j.matdes.2011.09.057
[3]  Fatemi-Varzaneh S.M, Zarei-Hanzaki A. Accumulative back extrusion (ABE) processing as a novel bulk deformation method. Materials Science and Engineering. A, 2009. 504(1): p. 104-106. doi: 10.1016/j.msea.2008.10.027
[4]  Máthis K, Gubicza J, Nam N.H. Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing. Journal of Alloys and Compounds. 2005. 394(1): p. 194-199. doi: 10.1016/j.jallcom.2004.10.050
[5]  Valiev R. Materials science: Nanomaterial advantage. Nature. 2002. 419(6910): p. 887-889. doi: 10.1038/419887a
[6]  Azushima A, Kopp R, Korhonen A, Yang D. Y. Severe plastic deformation (SPD) processes for metals. CIRP Annals, 2008. 57(2): p. 716-735. doi: 10.1016/j.cirp.2008.09.005
[7]  Tsuji N, Saito Y. L, Minamino Y. ARB (Accumulative Roll‐Bonding) and other new techniques to produce bulk ultrafine grained materials. Advanced Engineering Materials. 2003. 5(5): p. 338-344. doi: 10.1002/adem.200310077
[8]  Jiang H, Zhu Y, Theodore B, Darryl P. Alexandrov I, Lowe T.C. Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Materials Science and Engineering. A, 2000. 290(1-2): p. 128-138. doi: S0921509300009199
[9]  Zhilyaev A.P, Nurislamova G.V, Kim B.K, Baró M.D, Szpunar J.A, Langdon T.G. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta materiali. 2003. 51(3): p. 753-765. doi: 10.1016/S1359-6454(02)00466-4
[10] Toth L.S, Chen C, Pougis A, Arzaghi M. High pressure tube twisting for producing ultra fine grained materials: a review. Materials Transactions. 2019. 60(7): p. 1177-1191. doi: S1359646208007057
[11] Mohebbi M.S, Akbarzadeh A. Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Materials Science and Engineering: A. 2010. 528(1): p. 180-188. doi: 10.1016/j.msea.2010.08.081
[12] Zangiabadi A, Kazeminezhad M. Development of a novel severe plastic deformation method for tubular materials: Tube Channel Pressing (TCP). Materials Science and Engineering: A. 2011. 528(15): p. 5066-5072. doi: 10.1016/j.msea.2011.03.012
[13] Babaei A, Jafarzadeh H, Esmaeili F. Tube Twist Pressing (TTP) as a New Severe Plastic Deformation Method. Transactions of the Indian Institute of Metals. 2018. 71(3): p. 639-648. doi: 10.1007/s12666-017-1196-5
[14] Bodkhe M.G, Sharma S, Mourad Abdel-Hamid I, Sharma P.B. Finite element analysis of copper tube to study the behavior of equivalent strength during the severe plastic deformation process. Materials Today: Proceedings. 2022. 56: p. 3129-3136. doi: 10.1016/j.matpr.2022.01.044
[15] Liu Q, Wang J, Huang X, Wu T. In-plane and out-of-plane bending responses of aluminum mortise-tenon joints in lightweight electric vehicle inspired by timber structures. Thin-Walled Structures. 2018. 127: p. 169-179. doi: 10.1016/j.tws.2018.01.033
[16] Babaei A, Jafarzadeh H, Mazloumbashiri H. Processing ultrafine grained non-circular cross-section profiles via severe plastic deformation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2021. 235(3): p. 572-580. doi: 10.1177/1464420720972737
[17] Li M, Lu L, Fan Y, Ma M. Research on microstructure evolution and deformation behaviors of AZ31 Mg alloy sheets processed by a new severe plastic deformation with different temperatures. Materials Today Communications. 2023. 34: p. 105467. doi: 10.1016/j.mtcomm.2023.105467
[18] Mashoufi K, Garmroodi P, Mirzakhani A, Assempour A. Cyclic contraction-expansion extrusion (CCEE): An innovate severe plastic deformation method for tailoring the microstructure and mechanical properties of magnesium AZ91 alloy. Journal of Materials Research and Technology. 2023. 26: p. 8541-8554. doi: 10.1016/j.jmrt.2023.09.174
[19] Ding X, Kuai Y, Li T. Enhanced mechanical properties of magnesium alloy seamless tube by three-roll rotary piercing with severe plastic deformation. Materials Letters. 2022. 313: p. 131655. doi: 10.1016/j.matlet.2022.131655
[20] Asadi P, Akbari M, Armani A, Aliha R. M, Peyghami M, Sadowsk T. Recycling of brass chips by sustainable friction stir extrusion. Journal of Cleaner Production. 2023. 418: p. 138132. doi: 10.1016/j.jclepro.2023.138132
[21] Asadi P, Akbari M, Kohantorabi O, Peyghami M, Aliha M. R. M, Salehi S. M, Asiabaraki H. R, Berto, F. Characterization of the Influence of Rotational and Traverse Speeds on the Mechanical and Microstructural Properties of Wires Produced By the FSBE Method. Strength of Materials. 2022. 54(2): p. 318-330. doi: 10.1007/s11223-022-00403-5
[22] Asadi P, Akbari M, Talebi M, Peyghami M, Sadowski T, Aliha M.R.M. Production of LM28 Tubes by Mechanical Alloying and Using Friction Stir Extrusion. Crystals. 2023. 13(5): p. 814. doi: 10.3390/cryst13050814
[23] Humphreys F.J, Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Elsevier. 2004.
[24] Hallberg H. Influence of process parameters on grain refinement in AA1050 aluminum during cold rolling. International Journal of Mechanical Sciences. 2013. 66: p. 260-272. doi: 10.1016/j.ijmecsci.2012.11.016
[25] Takaki T, Hirouchi T, Hisakuni Y. Multi-Phase-Field Model to Simulate Microstructure Evolutions during Dynamic Recrystallization. MATERIALS TRANSACTIONS. 2008. 49(11): p. 2559-2565. doi: 10.2320/matertrans.MB200805
[26] Peczak P, Luton M.J. A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization. Acta Metallurgica et Materialia. 1993. 41(1): p. 59-71. doi: 10.1016/0956-7151(93)90339-T
[27] Lee H.W, Im Y. T. Cellular Automata Modeling of Grain Coarsening and Refinement during the Dynamic Recrystallization of Pure Copper. MATERIALS TRANSACTIONS. 2010. 51(9): p. 1614-1620. doi: 10.2320/matertrans.M2010116
[28] Davies C.H.J. The effect of neighbourhood on the kinetics of a cellular automaton recrystallisation model. Scripta Metallurgica et Materialia. 1995. 33(7): p. 1139-1143. doi: 10.1016/0956-716X(95)00335-S
[29] Hesselbarth H.W, Göbel I.R. Simulation of recrystallization by cellular automata. Acta Metallurgica et Materialia. 1991. 39(9): p. 2135-2143. doi: 10.1016/0956-7151(91)90183-2
[30] Raabe D, Hantcherli L. 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning. Computational Materials Science. 2005. 34(4): p. 299-313. doi: 10.1016/j.commatsci.2004.12.067
[31] Liu Y.X, Lin Y.C, Zhou Y. 2D cellular automaton simulation of hot deformation behavior in a Ni-based superalloy under varying thermal-mechanical conditions. Materials Science and Engineering: A. 2017. 691: p. 88-99. doi: 10.1016/j.msea.2017.03.039
[32] Li X, Zhou H. Simulation of dynamic recrystallization in AZ80 magnesium alloy using cellular automaton. Computational Materials Science. 2017. 140: p. 95-104. doi: 10.1016/j.commatsci.2017.08.039
[33] Deng X.H, Ju D.Y, Hu X.D, Zhao H.Y. Modeling of Dynamic Recrystallization Process in AZ31 Magnesium Alloy Using Cellular Automaton Method. Materials Science Forum. 2015. 833: p. 19-22. doi: 10.4028/www.scientific.net/MSF.833.19
[34] Ebrahimzadeh S, Jafarzadeh H. The influences of radial-forward-backward extrusion on the microstructure and mechanical evolution of AM60 magnesium alloy by experimental and finite element micromechanical based cellular automaton approach. Iranian Journal of Manufacturing Engineering. 2020. 7(9): p. 25-41.
[35] Yang D.Y, Kim K.J. Design of processes and products through simulation of three-dimensional extrusion. Journal of Materials Processing Technology. 2007. 191(1): p. 2-6. doi: 10.1016/j.jmatprotec.2007.03.088
[36] Zhang C, Zhang L, Xu Q, Xia Y, Shen W. The kinetics and cellular automaton modeling of dynamic recrystallization behavior of a medium carbon Cr-Ni-Mo alloyed steel in hot working process. Materials Science and Engineering: A. 2016. 678(Supplement C): p. 33-43. doi: 10.1016/j.msea.2016.09.056
[37] Guo Y.X, Lia Y, Yang C.S. Characterization of Hot Deformation Behavior and Processing Maps of Mg-3Sn-2Al-1Zn-5Li Magnesium Alloy. Journal of Metals. 2019. 9(1262): p. 1-15. doi: 10.3390/met9121262
[38] Laasraoui A, Jonas J.J. Prediction of steel flow stresses at high temperatures and strain rates. Metallurgical Transactions A.1991. 22(7): p. 1545-1558. doi: 10.1007/bf02667368
[39] Chen F, Qi K, Cui Z, Lai X. Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method. Computational Materials Science. 2014. 83(Supplement C): p. 331-340. doi: 10.1016/j.commatsci.2013.11.029
[40] Hallberg H, Wallin M, Ristinmaa M. Modeling of continuous dynamic recrystallization in commercial-purity aluminum. Materials Science and Engineering: A. 2010. 527(4–5): p. 1126-1134. doi: 10.1016/j.msea.2009.09.043
[41] Ding R, Guo Z.X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Materialia. 2001. 49(16): p. 3163-3175. doi: 10.1016/S1359-6454(01)00233-6
[42] Roberts W, Ahlblom B. A nucleation criterion for dynamic recrystallization during hot working. Acta Metallurgica. 1978. 26(5): p. 801-813. doi: 10.1016/0001-6160(78)90030-5
[43] Li F.H, Liu X, Yan L, Jie Z, Jurek D. Simulation of the Grain Structure Evolution of a Mg-Al-Ca-Based Alloy during Hot Extrusion Using the Cellular Automation Method. Key Engineering Materials. 2011. 491: p. 265-272. doi: 10.1016/j.commatsci.2017.08.039
[44] Xu C, Horita Z. Langdon T.G. Evaluating the influence of pressure and torsional strain on processing by high-pressure torsion. J Mater Sci. 2008. 43(23-24): p. 7286–7292. doi: 10.1007/s10853-008-2624-z
[45] Valle J.A.d, Eacute P, Teresa M, Eacute B, Jorge R. Grain Refinement in a Mg AZ91 Alloy via Large Strain Hot Rolling. MATERIALS TRANSACTIONS. 2003. 44(12): p. 2625-2630. doi: 10.2320/matertrans.44.2625