بررسی پارامترهای جاذب دینامیکی برای بهبود رفتار ارتعاشی ابزار داخل‌تراش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران

2 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

در فرآیند داخل‌تراشی با نسبت طول به قطر بیشتر از چهار به دلیل سفتی پایین ابزار، ارتعاش زیادی ایجاد می‌شود و کیفیت ماشینکاری سطح را پایین می‌آورد. به همین دلیل کنترل و کاهش ارتعاش ابزار داخل‌تراش همواره مورد توجه است. در این تحقیق ارتعاش جانبی یک ابزار داخل‌تراش با طول بلند مجهز به جاذب دینامیکی و تأثیر پارامترهای مختلف مورد بررسی قرار می‌گیرد. برای این منظور ابتدا معادلات حاکم بر ارتعاش جانبی سیستم استخراج و با استفاده از روش مودهای فرضی حل می‌شود. سپس تأثیر وجود جاذب و پارامترهای اصلی آن همانند موقعیت جاذب، سفتی جاذب و طول جاذب بر روی ارتعاش ابزار داخل تراش مورد مطالعه قرار می‌گیرد و نتایج به صورت نمودارهایی ارائه می‌شوند. نتایج حاصل نشان می‌دهند که اضافه شدن جاذب باعث افزایش فرکانس طبیعی ابزار به مقدار 10 درصد می‌شود و هر چه جاذب به نوک ابزار نزدیک‌تر می‌شود عملکرد بهتری نشان می‌دهد. همچنین با افزایش سفتی فنر جاذب، بازه عملکرد پایدار داخل‌تراشی افزایش می‌یابد و ابزار در فرکانس‌های بالاتری شروع به ارتعاش می‌کند. علاوه بر آن با افزایش طول جاذب تا طول 175 میلی‌متر، فاصله بین دو فرکانس تشدید جاذب افزایش می‌یابد که نشان از افزایش ناحیه عملکرد پایدار و صلبیت دینامیکی بیشتر است و از طول‌های بیشتر از 175 میلی‌متر، این رفتار کاهشی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of dynamic absorber parameters to improve the vibration behavior of boring bar

نویسندگان [English]

  • Abbas Rahi 1
  • Mahdi Hosseinpour 2
1 Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
2 Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
چکیده [English]

In the boring process with length to diameter ratio more than four, due to low rigidity of the tool, a lot of vibration is caused and the machining quality of the surface is reduced. For this reason, controlling and reducing vibration of the tool is always important. In this paper, the lateral vibration of a long boring bar equipped with dynamic absorber and the effect of various parameters are investigated. For this purpose, first the governing equations of the system are extracted and solved using assumed mode method. Then, the effect of absorber presence and its parameters such as absorber position, absorber stiffness and absorber length on the vibration of tool are studied and results are presented in diagrams. The results show that the addition of absorber increases the natural frequency of tool by 10% and as the absorber gets closer to the tip, the performance of boring process increases. Also, as the stiffness of the absorber increases, the steady-state cutting range of the boring bar increases and the tool begins to vibrate at higher frequencies. In addition, by increasing absorber length up to 175 mm, the distance between the two absorber resonance frequencies increases, which indicates an increase in the range of stable cutting and dynamic stiffness, and also from lengths greater than 175 mm, this behavior decreases.

کلیدواژه‌ها [English]

  • Dynamic Absorber
  • Natural Frequency
  • Boring Bar
  • Stiffness
  • Vibration
[1] M. Siddhpura and R. Paurobally, “A review of chatter vibration research in turning,” Int. J. Mach. Tools Manuf., Vol. 61, pp. 27–47, 2012, doi: 10.1016/j.ijmachtools.2012.05.007.
[2] W. Hendrowati, H. L. Guntur, A. A. A. Daman, and H. Lestari, “Analytical and experimental study of translational vibration response’s reduction on aluminum (Al) drilling process using translational mass vibration absorber (TMVA) system,” AIP Conf. Proc., Vol. 2187, 2019, doi: 10.1063/1.5138353.
[3] E. Budak and E. Ozturk, “Dynamics and stability of parallel turning operations,” CIRP Ann. - Manuf. Technol., Vol. 60, No. 1, pp. 383–386, 2011, doi: 10.1016/j.cirp.2011.03.028.
[4] D. I. Suyama, A. E. Diniz, and R. Pederiva, “The use of carbide and particle-damped bars to increase tool overhang in the internal turning of hardened steel,” Int. J. Adv. Manuf. Technol., Vol. 86, No. 5–8, pp. 2083–2092, 2016, doi: 10.1007/s00170-015-8328-z.
[5] F. Xia, Z. Liu, and Q. Song, “Boring bar with constrained damping,” Hangkong Xuebao/Acta Aeronaut. Astronaut. Sin., Vol. 35, No. 9, pp. 2652–2659, Sep. 2014, doi: 10.7527/S1000-6893.2013.0484.
[6] M. Sortino, G. Totis, and F. Prosperi, “Development of a practical model for selection of stable tooling system configurations in internal turning,” Int. J. Mach. Tools Manuf., Vol. 61, pp. 58–70, 2012, doi: 10.1016/j.ijmachtools.2012.05.010.
[7] L. T. Tunç and E. Budak, “Effect of cutting conditions and tool geometry on process damping in machining,” Int. J. Mach. Tools Manuf., Vol. 57, pp. 10–19, Jun. 2012, doi: 10.1016/j.ijmachtools.2012.01.009.
[8] X. Lei and C. Wu, “Investigating the Optimal Damping Performance of a Composite Dynamic Vibration Absorber with Particle Damping,” J. Vib. Eng. Technol., Vol. 6, No. 6, pp. 503–511, 2018, doi: 10.1007/s42417-018-0067-7.
[9] L. Houck, T. L. Schmitz, and K. Scott Smith, “A tuned holder for increased boring bar dynamic stiffness,” J. Manuf. Process., Vol. 13, No. 1, pp. 24–29, 2011, doi: 10.1016/j.jmapro.2010.09.002.
[10] X. Liu, Q. Liu, S. Wu, R. Li, and H. Gao, “Analysis of the vibration characteristics and adjustment method of boring bar with a variable stiffness vibration absorber,” Int. J. Adv. Manuf. Technol., Vol. 98, No. 1–4, pp. 95–105, 2018, doi: 10.1007/s00170-017-0453-4.
[11] L. Rubio, J. A. Loya, M. H. Miguélez, and J. Fernández-Sáez, “Optimization of passive vibration absorbers to reduce chatter in boring,” Mech. Syst. Signal Process., Vol. 41, No. 1–2, pp. 691–704, 2013, doi: 10.1016/j.ymssp.2013.07.019.
[12] L. Li, B. Sun, and H. Hua, “Analysis of the Vibration Characteristics of a Boring Bar with a Variable Stiffness Dynamic Vibration Absorber,” Shock Vib., Vol. 2019, 2019, doi: 10.1155/2019/5284194.
[13] U. Yigit, E. Cigeroglu, and E. Budak, “Chatter reduction in boring process by using piezoelectric shunt damping with experimental verification,” Mech. Syst. Signal Process., Vol. 94, pp. 312–321, 2017, doi: 10.1016/j.ymssp.2017.02.044.
[14] E. Abele, M. Haydn, and T. Grosch, “Adaptronic approach for modular long projecting boring tools,” CIRP Ann. - Manuf. Technol., Vol. 65, No. 1, pp. 393–396, 2016, doi: 10.1016/j.cirp.2016.04.104.
[15] Y. Alammari, M. Sanati, T. Freiheit, and S. S. Park, “Investigation of Boring Bar Dynamics for Chatter Suppression,” Procedia Manuf., Vol. 1, pp. 768–778, 2015, doi: 10.1016/j.promfg.2015.09.059.
[16] F. Chen, M. Hanifzadegan, Y. Altintas, and X. Lu, “Active damping of boring bar vibration with a magnetic actuator,” IEEE/ASME Trans. Mechatronics, Vol. 20, No. 6, pp. 2783–2794, 2015, doi: 10.1109/TMECH.2015.2393364.
[17] A. Matsubara, M. Maeda, and I. Yamaji, “Vibration suppression of boring bar by piezoelectric actuators and LR circuit,” CIRP Ann. - Manuf. Technol., Vol. 63, No. 1, pp. 373–376, 2014, doi: 10.1016/j.cirp.2014.03.132.
[18] J. Lü, J. Niu, Y. Shen, and S. Yang, “Vibration control of linear boring bar by dynamic vibration absorber combined with nonlinear energy sink,” Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, Vol. 53, No. 11, pp. 3124–3133, Nov. 2021, doi: 10.6052/0459-1879-21-475.
[19] A. Patel, A. Yadav, M. Law, B. Bhattacharya, and P. Wahi, “Damped Chatter Resistant Boring Bar Integrated with an Absorber Working in Conjunction with an Eddy Current Damper,” Journal of Vibration Engineering & Technologies, Sep. 2022, doi: 10.1007/s42417-022-00684-9.
[20] F. Bakhtiari-Nejad and H. Moradi, “Optimum design of vibration absorber with variable position for an Euler-Bernoulli beam under moving point excitation,” 14th Int. Congr. Sound Vib. 2007, ICSV 2007, Vol. 2, pp. 1058–1065, 2007.