اثر تغییر توان لیزر در فرایند AM-LMD بر پروفیل رسوب پودر اینکونل 718 بروی اینکونل 738

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی مهندسی مواد، واحدکرج، دانشگاه آزاداسلامی، کرج، ایران

2 گروه مهندسی مواد و متالورژی، واحد کرج، دانشگاه آزاداسلامی، کرج، ایران

3 گروه مهندسی مکانیک، واحد علوم و تحقیقات تهران، دانشگاه آزاداسلامی، تهران، ایران

چکیده

این تحقیق با هدف بررسی تأثیر تغییر توان لیزر بر مشخصات فصل مشترک در فرایند ساخت افزودنی (AM) با رسوب نشانی پودر اینکونل 718 بر روی زیرلایه از جنس اینکونل 738 به منظور بازسازی پره های معیوب توربین با رویکرد اقتصاد چرخشی انجام شد. رسوب فلز با لیزر (LMD) یک تکنیک ساخت لایه به لایه است که برای ساخت و تعمیر قطعات حیاتی و استراتژیک استفاده می‌­شود. برای این منظور، رسوب نشانی با توان مختلف 150، 250 و 350 وات بر روی زیرلایه، انجام پذیرفت. برخی از ویژگی‌­ها مانند ابعاد هندسی، تعداد پالس­‌ها در هر لایه و ریزساختار نمونه­‌ها مورد مطالعه قرار گرفت. با مقایسه نتایج، مشخص شد که با افزایش توان، یکپارچگی، ضخامت فصل مشترک و عمق ذوب زیرلایه افزایش می‌یابد. در مقابل، با افزایش توان، تخلخل سطحی، انحراف اندازه از ابعاد طراحی و تعداد پالس‌ها برای تکمیل هر لایه کاهش می‌یابد. هر لایه رسوب نشانی با توان 150، 250 و 350 وات به ترتیب با 17، 11 و 9 پالس تکمیل گردید. با افزایش توان از 150 وات به 350 وات، تخلخل سطحی حدود 90% کاهش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of laser power variation in AM-LMD process on Inconel 718 powder deposition profile on Inconel 738

نویسندگان [English]

  • Rasoull Hedayatnejad 1
  • Hamed Sabet 2
  • Sadegh Rahmati 3
  • Ali Salemi Golezani 2
1 Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
2 Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
3 Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

The aim of this study was to investigate the effect of laser power variation on joint connection characteristics in the additive manufacturing (AM) process by depositing Inconel 718 powder on an Inconel 738 substrate in order to reconstruct defective gas turbine blades with a circular economy approach. Laser metal deposition (LMD) is a layer-by-layer fabrication technique used to manufacture and reconstruct critical and strategic parts. For this purpose, deposition with different power of 150, 250 and 350 watts was performed on the substrate. Some features such as geometric dimensions, number of pulses per layer and microstructure of the samples were studied. Comparing the results, it was found that with increasing strength, integrity, joint connection thickness and substrate melting depth increase. In contrast, with increasing power, surface porosity, and size deviation from the design dimensions, and the number of pulses to complete each layer decrease. Each deposition layer with power of 150, 250 and 350 watts was completed with 17, 11 and 9 pulses, respectively. By increasing the power from 150 watts to 350 watts, the surface porosity decreased by about 90%.

کلیدواژه‌ها [English]

  • Additive Manufacturing
  • Laser Metal Deposition
  • Power
  • Superalloy
  • Inconel
[1] Boyce, M., 2006, Gas Turbine Engineering Handbook.Elsevier Butterworth- Heinemann, Oxford, UK.
[2] Han, J., 2004, Recent Studies in Turbine Blade Cooling. International Journal of Rotating Machinery, 10/6: 443–457.
[3] Zhang X, Li W, Cui W, Liou F. Modeling of worn surface geometry for engine blade repair using Laser-aided Direct Metal Deposition process. Manufacturing letters. 2018 Jan 1;15:1-4.
[4] T. DebRoy, L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – process, structure and properties, Prog. Mater. Sci. 92 (2018) 112–224.
[5] A. Mostafaei, P. Rodriguez De Vecchis, M.J. Buckenmeyer, S.R. Wasule, B.N. Brown, M. Chmielus, Microstructural evolution and resulting properties of differently sintered and heat-treated binder jet 3D printed Stellite 6, Mater. Sci. Eng., C 102 (2019) 276–288.
[6] E.T. Akinlabi, S.A. Akinlabi, Advanced coating: Laser Metal Deposition of Aluminium powder on Titanium Substrate, Proceedings of the World Congress on Engineering, vol. II, 2016.
[7] Z. Gan, G. Yu, X. He, S. Li, Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-based alloy on steel, Int. J. Heat Mass Transf. 104 (2017) 28–38.
[8] H. Gu, L. Li, Computational fluid dynamic simulation of gravity and pressure effects in laser metal deposition for potential additive manufacturing in space, Int. J. Heat Mass Transf. 140 (2019) 51–65.
[9] Allen J. An investigation into the comparative costs of additive manufacture vs.machine from solid for aero engine parts. ROLLS-ROYCE PLC DERBY (UNITEDKINGDOM); 2006.
[10] Kulkarni A. Additive Manufacturing of Nickel Based Superalloy. arXiv preprint arXiv:1805.11664. 2018 May 14.
[11] P. Ghosal, M. C. Majumder, A. Chattopadhyay, (2017), study on direct laser metal deposition, materials today: processing, 5, 12509-12518.
[12] Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. 2018 Jun 15;143:172-96.
[13] Tofail SA, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials today. 2018 Jan 1;21(1):22-37.
[14] Kumar H. Numerical simulation of stainless steel powder feeding in a coaxial nozzle for high powder efficiency in Laser Direct Energy Deposition. Frontiers in Mechanical Engineering.:3.
[15] H. Freibe, P. Khazan, M. Stroth, H. Köhler, Properties of large 3D parts made from Stellite 21 through direct powder deposition, Lasers in Manufacturing Conference, 2015.
[16] G. J. Marshall, W.J. Young, S.M. Thompson, N. Shamsaei, S. Daniewicz, S. Shao, Understanding the microstructure formation of Ti-6Al-4V during direct laser deposition via in-situ thermal monitoring, Jom 68 (3) (2016) 778–790.
[17] M. T. Dalaee, L. Gloor, Ch. Leinenbach, K, Wegener, Experimental and numerical study of the influence of induction heating process on build rates Induction Heatingassisted laser Direct Metal Deposition (IH-DMD), Surface and Coatings Technology 384 (2020) 125275.
[18] F. Caiazzo, A. Caggiano, Laser direct metal deposition of 2024 Al alloy: trace geometry prediction via machine learning, Materials 11 (2018) 444.
[19] O. Zinovieva, A. Zinoviev, V. Ploshikhin, Three-dimensional modeling of the microstructure evolution during metal additive manufacturing, Comput. Mater. Sci. 141 (2018) 207–220.
[20] T. Gu, B. Chen, C. Tan, J. Feng, Microstructure evolution and mechanical properties of laser additive manufacturing of high strength Al-Cu-Mg alloy, Opt. Laser Technol. 112 (2019) 140–150.
[21] Ramakrishnan A, Dinda GP. Direct laser metal deposition of Inconel 738. Materials Science and Engineering: A. 2019 Jan 7;740:1-3.
[22] Caiazzo F. Laser-aided Directed Metal Deposition of Ni-based superalloy powder. Optics & Laser Technology. 2018 Jul 1;103:193-8
[23] H. Zhang, H. Zhu, T. Qi, Z. Hu, X. Zeng, Selective laser melting of high strength Al- Cu-Mg alloys: Processing, microstructure and mechanical properties, Mater. Sci. Eng., A 656 (2016) 47–54.
[24] C. Y. Kong, R.J. Scudamore, J. Allen, High-rate laser metal deposition of Inconel 718 component using low heat-input approach, Physics Procedia 5 (2010) 379–386.
[25] A. S. Metel, M.M. Stebulyanin, S.V. Fedorov, A.A. Okunkova, Power density distribution for laser additive manufacturing (SLM): potential, Fund. Adv. Appl. Technol. 7 (5) (2019) 7010005.
[26] H. Choo, K. Sham, J. Bohling, A. Ngo, X. Xiao, Y. Ren, P.J. Depond, M.J. Matthews, E. Garlea, Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel, Mater. Des. 164 (2018) 107534.
[27] P. Muller, P. Mognol, J.Y. Hascoet, Modeling and control of a direct laser powder deposition process for functionally graded materials (FGM) parts manufacturing, Mater. Process. Technol. 213 (2013) 685–692.
[28] K.C. Atony, A.N. Antony, K.J. Bhansali, Hardfacing, ASM Handbook 6 (1983) 771–773.
[29] G. L. Goswami, R. Santosh Kumar, B.L. Mordike Galun, Laser cladding of Nickel based hardfacing materials as an alternative of Stellite, BARC, Newsletter 249 (2003) 64.
[30] Attallah MM, Jennings R, Wang X, Carter LN. Additive manufacturing of Ni-based superalloys: The outstanding issues. MRS bulletin. 2016 Oct;41(10):758-64
[31] Qiyasvand, M., Shoja Razavi, R., Barakat, M. (2017) Fabrication of increasing Inconel 718 superalloy by laser direct metal deposition method. Sixth International Conference on Materials and Metallurgy Engineering. Tehran. (in Persian)
[32] Kulkarni A. Additive Manufacturing of Nickel Based Superalloy. arXiv preprint arXiv:1805.11664. 2018 May 14.
[33] Yetkin ME, Kahraman B, Özfırat MK, Sengün B, Simsir F. Determination of travertine samples porosity using image analysis method. Indian J. Eng. 2017;37:227-35.
[34] Bambach M, Sizova I, Silze F, Schnick M. Comparison of laser metal deposition of Inconel 718 from powder, hot and cold wire. Procedia CIRP. 2018 Jan 1;74:206-9.
[35] Ma C, Wei X, Yan B, Yan P. Numerical Simulation of Moving Heat Flux during Selective Laser Melting of AlSi25 Alloy Powder. Metals. 2020 Jul 1;10(7):877.
[36] Burkhardt I, Visone R, Riekehr S, Rackel MW, Kashaev N, Enz J. Parameter development and characterization of laser metal deposited Ti alloy powders for use at elevated temperatures. Procedia CIRP. 2018 Jan 1;74:176-9