بررسی تجربی و عددی فرآیند تنش‌زدایی ارتعاشی در یک اتصال جوشی T شکل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مکانیک، دانشکدگان فنی، دانشگاه تهران، تهران

2 دانشیار، مهندسی مکانیک، دانشکدگان فنی، دانشگاه تهران، تهران

چکیده

از جمله روش‌های مرسوم تنش‌زدایی که می‌توان پس از انجام فرآیند ساخت بر روی قطعه اجرا نمود تنش‌زدایی حرارتی و ارتعاشی هستند. از مزایای روش تنش‌زدایی ارتعاشی نسبت به تنش‌زدایی حرارتی می‌توان به عدم نیاز به فیکسچر بندی، صرفه جویی در وقت و هزینه، عدم محدودیت وزنی و ابعادی و قابلیت استفاده برای تمامی آلیاژها نام برد. در این پژوهش به مطالعه عددی و تجربی تنش زدایی ارتعاشی یک اتصال جوشی T شکل پرداخته شده است. در گام اول نمونه T شکل با فرایند جوشکاری قوس الکتریکی ساخته شد. تنش‌های پسماند ایجاد شده درطول خط جوش به میزان 251 مگاپاسکال و در عرض خط جوش به میزان 191 مگاپاسکال اندازه گیری شد. انحراف ناشی از تنش‌های پسماند بدست آمده از شبیه‌سازی فرایند جوشکاری با نتیجه حاصل از مقادیر تجربی در راستای طولی حدود 17درصد و در راستای عرضی حدود 1.5 درصد بدست آمد. در ادامه ازطریق شبیه سازی المان محدود فرآیند تنش زدایی ارتعاشی، مقادیر بهینه پارامترهای مؤثر بر تنش‌زدایی ارتعاشی مانند فرکانس اعمال نیرو، میزان نیرو و محل اعمال نیرو، به دست آمد. موثرترین حالت در مدل‌سازی تنش‌زدایی ارتعاشی مربوط به زمانی است که نیروی اعمالی در آن 20% نیرو تسلیم قطعه و فرکانس تحریک 95% فرکانس طبیعی قطعه لحاظ گردد. نتایج اندازه‌گیری تجربی پس از تنش‌زدایی ارتعاشی با نتایج مدل‌سازی خطای 10درصدی را نشان داد . نتایج نشان داد که با افزایش فرکانس بار اعمالی تا 95% فرکانس طبیعی، تنش‌های پسماند طولی بیش از 55 درصد و تنش‌های عرضی حدود 70 درصد کاهش یافته‌‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental and numerical investigation of the vibration stress relief process on a T- shape welded joint

نویسندگان [English]

  • Pouria Shahfaragh 1
  • Mohammadreza Farahani 2
  • Majid Safarabadi Farahani 2
  • Majid Farhang 1
1 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

Thermal and vibration stress relieving processes are among the common methods of reducing residual stresses that can be performed on the part after the manufacturing. The advantages of vibratory stress relief over thermal stress relief are no need for fixtures, time and cost savings, no weight and dimensional limitations and usability for all alloys. In this research, the numerical and experimental study of vibration stress relief process of a T-shaped weld has been done. In the first step, a T-joint was made using shielded metal arc welding . The longitudinal and transverse residual stresses equal to 251 MPa and 191 MPa were measured, respectively. The differences between the calculated and the measured residual stresses in the longitudinal and transverse direction are about 17% and 1.5%, respectively. Then, by finite element simulating the vibration stress relieving process, the optimal values of the parameters affecting the process, such as the frequency of force exertion, the amount of force and the location of force exertion, were obtained. The most effective vibration stress relief condition related to the case with the applied force equal to 20% of the  yield force of the sample and the excitation frequency equal to 95% of the natural frequency of the sample. The differences between the calculated and the measured residual stresses after vibration stress relief process is about 10%. By increasing the applied load frequency to 95% of natural frequency of the sample, longitudinal and transverse residual stresses decreased by more than 55% and about 70%, respectively.

کلیدواژه‌ها [English]

  • Vibration stress relief
  • Residual stress measurement
  • Hole drilling strain gauge method
  • Finite element simulation
[1] Li, W., H. Frederick, and G. Palardy, Multifunctional films for thermoplastic composite joints: Ultrasonic welding and damage detection under tension loading. Composites Part A: Applied Science and Manufacturing, 2021. 141: pp. 106221.
[2] Sam-Daliri, O., et al., Impedance analysis for condition monitoring of single lap CNT-epoxy adhesive joint. International Journal of Adhesion and Adhesives, 2019. 88: p. 59-65.
[3] Sam-Daliri, O., M. Farahani, and A. Araei, Condition monitoring of crack extension in the reinforced adhesive joint by carbon nanotubes. Welding Technology Review, 2019. 91(12): pp. 7-15.
[4] Sam-Daliri, O., et al., Structural health monitoring of defective single lap adhesive joints using graphene nanoplatelets. Journal of Manufacturing Processes, 2020. 55: pp. 119-130.
[5] Stetco, C., et al. Piezocapacitive sensing for structural health monitoring in adhesive joints. in 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). 2019. IEEE.
[6] Masubuchi, K., Analysis of welded structures: residual stresses, distortion, and their consequences. Vol. 33. 2013: Elsevier.
[7] Enami, M., M. Farahani, and M. Farhang, Novel study on keyhole less friction stir spot welding of Al 2024 reinforced with alumina nanopowder. The International Journal of Advanced Manufacturing Technology, 2019. 101(9): pp. 3093-3106.
[8] Shahmirzaloo, A., M. Farahani, and M. Farhang, Evaluation of local constitutive properties of Al2024 friction stir-welded joints using digital image correlation method. The Journal of Strain Analysis for Engineering Design, 2021. 56(7): pp. 419-429.
[9] Farhang, M., M. Farahani, and M. Enami, Experimental Study on the Effects of Friction Stir Spot Welding Process Parameters on AL2024T3 Joint Strength. Advanced Design and Manufacturing Technology Journal, 2021. 14(4): pp. 105-112.
[10] Farhang, M., M. Farahani, and M. Nazari, Incorporation of Al2O3 powder for improvement of the mechanical and metallurgical properties of multi-passes friction stir welding of Al 2024. Iranian Journal of Manufacturing Engineering, 2021. 8(3): pp. 35-46.
[11] Zamanpour, A., et al., Experimental Study on the Effects of Harmonic Vibration on the Stress Relief of the Butt Welded AISI 1021 Pipes. Iranian Journal of Manufacturing Engineering, 2020. 7(2): pp. 1-7.
[12] Akbari, D., M. Farahani, and N. Soltani, Effects of the weld groove shape and geometry on residual stresses in dissimilar butt-welded pipes. The Journal of Strain Analysis for Engineering Design, 2012. 47(2): pp. 73-82.
[13] Sattari-Far, I. and M. Farahani, Effect of the weld groove shape and pass number on residual stresses in butt-welded pipes. International Journal of Pressure Vessels and Piping, 2009. 86(11): pp. 723-731.
[14] Farahani, M. and I. Sattari-Far, Effects of residual stresses on crack-tip constraints. Scientia Iranica, 2011. 18(6): pp. 1267-1276.
[15] Farahani, M., et al., Numerical and experimental investigations of effects of residual stresses on crack behavior in Aluminum 6082-T6. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012. 226(9): pp. 2178-2191.
[16] Bachmann, M., et al., Numerical simulation of thermally induced residual stresses in friction stir welding of aluminum alloy 2024-T3 at different welding speeds. The International Journal of Advanced Manufacturing Technology, 2017. 91(1): pp. 1443-1452.
[17] Coules, H.E., Contemporary approaches to reducing weld induced residual stress. Materials Science and Technology, 2013. 29(1): pp. 4-18.
[18] Chuvas, T.C., D.A. Castello, and M.P. Cindra Fonseca, Residual stress relief of welded joints by mechanical vibrations. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016. 38(8): p. 2449-2457.
[19] Sadeghi, B., et al., Effects of post weld heat treatment on residual stress and mechanical properties of GTAW: The case of joining A537CL1 pressure vessel steel and A321 austenitic stainless steel. Engineering Failure Analysis, 2018. 94: pp. 396-406.
[20] Cozzolino, L.D., et al., Investigation of post-weld rolling methods to reduce residual stress and distortion. Journal of Materials Processing Technology, 2017. 247: pp. 243-256.
[21] Gao, H., et al., Experimental and simulation investigation on thermal-vibratory stress relief process for 7075 aluminium alloy. Materials & design, 2020. 195: pp. 108954.
[22] Tatar, F., A.-H. Mahmoudi, and A. Shooshtari, Vibratory Stress Relief of Welded Austenite Stainless Steel Plates: Numerical and Experimental Approach. Iranian Journal of Materials Forming, 2021. 8(1): pp. 50-64.
[23] Mohanty, S., et al., The residual stress distribution of CO2 laser beam welded AISI 316 austenitic stainless steel and the effect of vibratory stress relief. Materials Science and Engineering: A, 2017. 703: pp. 227-235.
[24] Tamasgavabari, R., et al., The effect of harmonic vibration with a frequency below the resonant range on the mechanical properties of AA-5083-H321 aluminum alloy GMAW welded parts. Materials Science and Engineering: A, 2018. 736: pp. 248-257.
[25] Hu, X., et al., Study on residual stress releasing of 316L stainless steel welded joints by ultrasonic impact treatment. International Journal of Steel Structures, 2020. 20(3): pp. 1014-1025.
[26] Schajer, G.S., Practical residual stress measurement methods. 2013: John Wiley & Sons.
[27] Wang, Q., et al., Influence of restraint conditions on residual stress and distortion of 2219-T8 aluminum alloy TIG welded joints based on contour method. Journal of Manufacturing Processes, 2021. 68: pp. 796-806.
[28] Safarabadi, M., Evaluation of curing residual stresses in three-phase thin composite laminates considering micro-scale effects. Journal of Composite Materials, 2016. 50(27): pp. 3753-3764.
[29] Shokrieh, M. and M. Safarabadi, Effect of fibre transverse isotropy on micro-residual stresses in polymeric composites. The Journal of Strain Analysis for Engineering Design, 2011. 46(8): pp. 817-824.
[30] Manawan, M., et al. XRD Residual Stress and Texture Analysis on 6082T Aluminum Alloy. in Materials Science Forum. 2021. Trans Tech Publ.
[31] Sasaki, T., et al. Standardization of Cosα Method for X-Ray Stress Measurement. in Materials Science Forum. 2021. Trans Tech Publ.
[32] Farahani, M., S. Hakkak Zargar, and D. Akbari, Investigation of the e ects of the weld groove shape on the residual stress formation in the butt-welded plates. Scientia Iranica, 2016. 23(5): pp. 2230-2237.
[33] Farhang, M., et al., Effect of friction stir welding parameters on the residual stress distribution of Al-2024-T6 alloy. Journal of Mechanical Engineering and Sciences, 2021. 15(1): pp. 7684-7694.
[34] Schajer, G., Compact calibration data for hole-drilling residual stress measurements in finite-thickness specimens. Experimental Mechanics, 2020. 60(5): pp. 665-678.
[35] Zhang, K., M. Yuan, and J. Chen, General calibration formulas for incremental hole drilling optical measurement. Experimental Techniques, 2017. 41(1): pp. 1-8.
[36] Aoki, S., T. Nishimura, and T. Hiroi, Reduction method for residual stress of welded joint using random vibration. Nuclear engineering and design, 2005. 23(14): pp. 1441-1445.
[37] Moraes, A.G.d., T.G.R. Clarke, and I.L. Diehl, Quantification of CTOD fracture toughness in welded
joints to evaluate the efficacy of vibration stress relief compared to thermal stress relief.
Materials Research, 2020. 23.
[38] Yang, Y., Understanding of vibration stress relief with computation modeling. Journal of Materials Engineering and Performance, 2009. 18(7): pp. 856-862.
[39] Ebrahimi, S., M. Farahani, and D. Akbari, The influences of the cyclic force magnitude and frequency on the effectiveness of the vibratory stress relief process on a butt welded connection. The International Journal of Advanced Manufacturing Technology, 2019. 102(5): p. 2147-2158.
[40] Moattari, M., et al., Evaluations of residual stresses in repair welding of Ni-based IN939 superalloy. Journal of Thermal Stresses, 2020. 43(7): pp. 801-815.
[41] Zargar, S.H., M. Farahani, and M.K.B. Givi, Numerical and experimental investigation on the effects of submerged arc welding sequence on the residual distortion of the fillet welded plates. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016. 230(4): pp. 654-661.
[42] Lindgren, L.-E. Modelling for residual stresses and deformations due to welding:" knowing what isn't necessary to know". in International Seminar on Numerical Analysis of Weldability: 01/10/2001-02/10/2001. 2002. Maney Publishing (for The Institute of Materials, Minerals and Mining).
[43] Charkhi, M. and D. Akbari, Experimental and numerical investigation of the effects of the pre-heating in the modification of residual stresses in the repair welding process. International Journal of Pressure Vessels and Piping, 2019. 171: pp. 79-91.
[44] Barsoum, Z. and I. Barsoum, Residual stress effects on fatigue life of welded structures using LEFM. Engineering failure analysis, 2009. 16(1): pp. 449-467.
[45] Sam Daliri, O., M. Farahani, and M. Farhang, A combined numerical and statistical analysis for prediction of critical buckling load of the cylindrical shell with rectangular cutout. Engineering Solid Mechanics, 2019. 7(1): pp. 35-46.
[46] Sam Daliri, O. and M. Farahani, Characterization of Stress Concentration in Thin Cylindrical Shells with Rectangular Cutout Under Axial Pressure. Advanced Design and Manufacturing Technology Journal, 2017. 10(2): pp. 133-141.
[47] Fatemi, A. and B. Mollaei Dariani, Forming limit prediction of anisotropic material subjected to normal and through thickness shear stresses using a modified M–K model. The International Journal of Advanced Manufacturing Technology, 2015. 80(9): pp. 1497-1509.