بررسی رفتار مکانیکی- ترمیمی کامپوزیت‌های خودترمیم شونده اپوکسی/الیاف شیشه حاوی میکروکپسول و نانوذرات سیلیکا تحت بارگذاری برشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی مواد و متالورژی، دانشگاه فنی و حرفه‌ای، تهران

2 استاد، مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

3 استادیار، مهندسی و علم مواد، دانشگاه زنجان، زنجان

چکیده

در این کار پژوهشی، تأثیر هم­زمان نانوذرات سیلیکا و میکروکپسول­های حاوی عامل ترمیم بر رفتار ترمیمی- مکانیکی کامپوزیت­های خودترمیم­شونده اپوکسی/ الیاف شیشه مورد بررسی قرار گرفت. بدین منظور نانوذرات سیلیکا با درصدهای مختلف (1، 3 و 5 درصد وزنی)، در کامپوزیت هوشمند حاوی 14 درصد وزنی حاوی عامل ترمیم کپسوله شده توزیع شدند. به منظور تخریب کامپوزیت­های هوشمند، از آزمون نفوذ شبه­استاتیک با نیروی تخریب N 3300 استفاده شد. همچنین به منظور ارزیابی عملکرد ترمیمی- مکانیکی، از آزمون استحکام برشی بین لایه­ای استفاده شد. از میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) برای شناسایی مکانیزم­ها، عملکرد ترمیم و اندرکنش نانوذرات استفاده شد. نتایج بدست آمده از آزمون نفوذ شبه­استاتیک نشان داد که افزودن نانوذرات سیلیکا باعث کاهش سطح آسیب­های ایجاد شده در کامپوزیت تحت نیروی اعمالی شد که در نهایت منجر به بهبود عملکرد ترمیم شد. کمترین میزان آسیب ایجاد شده در نمونه حاوی یک درصد وزنی نانوذرات سیلیکا مشاهده شد. براساس نتایج بدست آمده کامپوزیت حاوی 5 درصد وزنی نانوذرات سیلیکا با بازده ترمیم 2/118 درصد، بیش­ترین بازده ترمیم در مقایسه با دیگر کامپوزیت­ها داشت. ایجاد خطوط V شکل و آگلومره شدن نانوذرات سیلیکا به عنوان مکانیزم­های تأثیرگذار در استحکام برشی کامپوزیت­های خودترمیم­شونده، توسط FESEM شناسایی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the healing-mechanical behavior of glass fibers/epoxy self-healing composites containing microcapsules and silica nanoparticles under the shear loading

نویسندگان [English]

  • Sadegh Mirzamohammadi 1
  • Reza Eslami-Farsani 2
  • Hossein Ebrahimnezhad-Khaljiri 3
1 Department of Materials and Metallurgical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
3 Department of Materials Science and Engineering, Faculty of Engineering, University of Zanjan, Zanjan, Iran.
چکیده [English]

In this research work, the simultaneous effect of silica nanoparticles and microcapsules containing healing agent on the healing-mechanical behavior of glass fibers/epoxy self-healable composites was investigated. To do so, the silica nanoparticles with the different percentages (1, 3 and 5 wt.%) into the smart composite containing the 14 wt.% capsulated healing agent were dispersed. For destructing the smart composites, the quasi-static penetration test with the damage force of 3300 N was used. Also, for assessing the healing mechanical performances, the interlaminar shear strength test was used. As well as, the field emission scanning electron microscope (FESEM) was used for characterizing the related mechanisms, healing performance and interaction of nanoparticles into the composite structure. The obtained results from quasi-static penetration test showed that adding the silica nanoparticles caused to reduce the level of created damages into the composite under damage force, which finally resulted to improve the healing performance. The lowest created damage was seen in the sample containing 1 wt.% silica nanoparticles. Based on the obtained results, the composite containing 5 wt.% silica nanoparticles with healing efficiency of 118.2% had the maximum healing efficiency, as compared with other composites. The creation of V shape lines and agglomeration of silica nanoparticles as effective mechanisms on the shear strength of self-healable composites were characterized by FESEM.

کلیدواژه‌ها [English]

  • Smart Composite Structure
  • Self-healing
  • Urea Formaldehyde Microcapsule
  • Silica Nanoparticles
  • Mechanical Properties Recovery
[1] H. Ebrahimnezhad Khaljiri, R. Eslami Farsani, H. Khorsand, K. Abbas Banaie, Hybridization effect of fibers reinforcement on tensile properties of epoxy composites, Journal of Science and Technology of Composite, Vol. 1, No. 2, pp. 21-28, 2015. (in Persian).
[2] R. Eslami-Farsani, H. Ebrahimnezhad-Khaljiri, Smart epoxy composites, J. Parameswaranpillai, H. Pulikkalparambil, S. M. Rangappa, S. Siengchin (Eds.), Epoxy Composites: Fabrication, Characterization and Applications, pp. 349-394, Weinheim: Wiley VCH Verlag GmbH & Co, 2021.
[3] B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, S. R. White, Self-healing polymers and composites, Annual Review of Materials Research, Vol. 40, pp. 179-211, 2010.
[4] J. Canadell, H. Goossens, B. Klumperman, Self-healing materials based on disulfide links, Macromolecules, Vol. 44, No. 8, pp. 2536–2541, 2011.
[5] M. Srinivas, B. Yelamasetti, T. V. Vardhan, R. Mohammed, A critical review on self-healing composites, Materials Today: Proceedings, Vol. 46, pp. 890-895, 2021.
[6] A. Kausar, Self-healing polymer/carbon nanotube nanocomposite: a review, Journal of Plastic Film and Sheeting, Vol. 37, No. 2, pp. 160-181, 2021.
[7] Q. Zhang, L. Liu, C. Pan, D. Li, Review of recent achievements in self-healing conductive materials and their applications, Journal of Materials Science, Vol. 53, No .1, pp. 27–46, 2018.
[8] N. Zhong, W. Post, 2015. Self-repair of structural and functional composites with intrinsically self-healing polymer matrices: a review, Composites Part A: Applied Science and Manufacturing, Vol. 69, pp. 226-239, 2015.
[9] R. Eslami-Farsani, H. Ebrahimnezhad-Khaljiri, A review on healing and mechanical behaviors of self-healable polymer matrix composites by extrinsic healing methods, Journal of Science and Technology of Composites, Vol. 6, No. 4, pp. 549-570, 2020. (in Persian).
[10] T. Yin, L. Zhou, M. Z.Rong, M. Q. Zhang, Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent, Smart Material and Structures, Vol. 17, 015019, 2008.
[11] A. R. Jones, B. J. Blaiszik, S. R. White, N. R. Sottos, Full recovery of fiber/matrix interfacial bond strength using a microencapsulated solvent-based healing system, Composites Science and Technology, Vol. 79, pp. 1-7, 2013.
[12] M. A. Mohammadi, R. Eslami-Farsani, H. Ebrahimnezhad-Khaljiri, S. Mirzamohammadi, M. R. Zamani, Investigating compression properties of healed sandwich structure via epoxy and TETA microcapsules, The Biennial International Conference on Experimental Solid Mechanics, Tehran, Iran, February 13-14, 2018. COI: WMECH04_012.
[13] H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, Experimental investigation of flexural properties of glass fibers- epoxy self-healable composite structures containing capsulated epoxy healing agent and NiCl2(Imidazole)4 Catalyst, Journal of Industrial Textiles, Vol. 51, No. 5, pp. 788-805, 2021.
[14] S. B. Jagtap, M. S. Mohan, P. G. Shukla, Improved performance of microcapsules with polymer nanocomposite wall: preparation and characterization, Polymer, Vol. 83, pp. 27-33, 2016.
[15] S. Daradmare, M.Pradhan, V. S. Raja, S. Parida, Parametric Studies of Formation and Morphology of Sub-Micron Sized GO Stabilized PS/GO Containers Encapsulating 8-HQ,, Polymer, Vol. 118, pp. 116-126, 2017.
[16] H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, S. Arbab Chirani, Microcapsulated epoxy resin with nanosilica-urea formaldehyde composite shell, Journal of Applied Polymer Science, Vol. 137, No. 16, 48580, 2020.
[17] M. Amirabadi-Zadeh, H. Khosravi, E. Tohidlou, Preparation of silica-decorated graphene oxide nanohybrid system as a highly efficient reinforcement for woven jute fabric reinforced epoxy composites, Journal of Applied Polymer Science, Vol. 138, No. 2, 49653, 2021.
[18] H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, The tensile properties and interlaminar shear strength of microcapsules-glass fibers/epoxy self-healable composites, Engineering Fracture Mechanics, Vol. 230, 106937, 2020.
[19] E. Manfredi, A. Cohades, I. Richard, V. Michaud, Assessment of solvent capsule-based healing for woven E-glass fibre-reinforced polymers. Smart Materials and Structures, Vol. 24, No. 1, 015019, 2015.
[20] M. Tripathi, J. Rahamtullah, D. Kumar, C. Rajagopal, P. K. Roy, Influence of microcapsule shell material on the mechanical behavior of epoxy composites for self-healing applications, Journal of Applied Polymer Science, Vol. 131, No. 15, 40572, 2014.
[21] Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer-Matrix Composite to a Concentrated Quasi-Static Indentation Force, ASTM D6264, 2012.
[22] M. Tripathi, R. Dwivedi, D. Kumar, P. K. Roy, Thermal activation of mendable epoxy through inclusion of microcapsules and imidazole complexes, Polymer-Plastics Technology and Engineering, Vol. 55, No. 2, pp. 129-137, 2016.
[23] T. Yin, M. Z. Rong, M. Q. Zhang, G. C. Yang, Self-healing epoxy composites - preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent, Composites Science and Technology, Vol. 67, No. 2, pp. 201-212, 2007.
[24] M. Ghorbani, H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, H. Vafaeenezhad, The synergic effect of microcapsules and titanium nanoparticles on the self-healing and self-lubricating epoxy coatings: A dual smart application, Surfaces and Interfaces, Vol. 23, 100998, 2021.
[25] P. A. Bolimowski, A. Boczkowska, Autonomous self-healing based on epoxy resin–imidazole chemistry in carbon fiber-reinforced polymer composites, Journal of Applied Polymer Science, Vol. 136, No. 2, 46938, 2019.
[26] Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, ASTM 2344, 2013.
[27] Y. C. Yuan, Y. Ye, M. Z. Rong, H. Chen, J. Wu, M. Q. Zhang, S. X. Qin, G. C. Yang, Self-healing of low-velocity impact damage in glass fabric/epoxy composites using an epoxy–mercaptan healing agent, Smart Materials and Structures, Vol. 20, No. 1, 015024, 2011.
[28] T. Prasad, S. Halder, S. S. Dhar, M. S. Goyat, Epoxy/imidazole functionalized silica epoxy nanocomposites: mechanical and fracture behaviour, Express Polymer Letters Vol. 15, No. 3, pp. 203-223, 2021.
[29] P. Dittanet, R. A. Pearson, Effect of silica nanoparticle size on toughening mechanisms of filled epoxy, Polymer, Vol. 53, No. 9, pp. 1890-1905, 2012.
[30] B. Wei, S. Song, H. Cao, Strengthening of basalt fibers with nano-sio2–epoxy composite coating, Materials and Design, Vol. 32, No. 8-9, pp. 4180-4186, 2011.
[31] K. Naresh, K. Rajalakshmi, A. Vasudevan, S. Senthil Kumaran, R. Velmurugan, K. Shankar, Effect of nanoclay and different impactor shapes on glass/epoxy composites subjected to quasistatic punch shear loading, Advances in Materials and Processing Technologies, Vol. 4, No. 3, pp. 345-357, 2018.
[32] G. Ragosta, M. Abbate, P. Musto, G. Scarinzi, L. Mascia, Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness, Polymer, Vol. 46, No. 23, pp. 10506-10516, 2005.
[33] H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, S. Talebi, Investigating the high velocity impact behavior of the laminated composites of aluminum/jute fibers- epoxy containing nanoclay particles, Fibers and Polymers, Vol. 21, No. 11, pp. 2607-2613, 2020.
[34] P. Dharmavarapu, M. B. S. Sreekara Reddy, Failure analysis of silane-treated kevlar-reinforced nano-silica-toughened epoxy composite in laminar shear strength, drop load impact and drilling process, Journal of Failure Analysis and Prevention, Vol. 20, No. 5, pp. 1719-1725, 2020.
[35] A. Jena, S. R. K. Prusty, B. C. Ray, Mechanical and thermal behaviour of multi-layer graphene and nanosilica reinforced glass fiber/epoxy composites, Materials Today: Proceedings, Vol. 33, pp. 5184-5189, 2020.
[36] Z. Q. Yu, S. L. You, H. Baier, Effect of organosilane coupling agents on microstructure and properties of nanosilica/epoxy composites, Polymer Composites, Vol. 33, No. 9, pp. 1516-1524, 2012.