بررسی خواص مکانیکی و حرارتی نمونه‌های تقویت‌شده با سیم فلزی پیوسته در فرآیند لایه نشانی مذاب به‌منظور عامل تحریک حافظ شکلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ‌التحصیل کارشناسی‌ارشد، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

10.22034/ijme.2024.434021.1898

چکیده

در این پژوهش ساخت نمونه‌های تقویت‌شده با سیم فلزی به‌عنوان جزء پیوسته تقویت‌کننده و همچنین محرک حافظ شکلی، در فرآیند ساخت افزایشی لایه نشانی مذاب (FDM) چاپ شد. مواد حافظ شکلی زیر‌مجموعه‌ی مهمی از مواد هوشمند هستند که  شکل اصلی خود را به خاطر سپرده و پس از اعمال تغییر شکل در پاسخ به یک محرک خاص مانند گرما، مغناطیس، الکتریسیته، رطوبت و غیره، شکل اصلی خورد را بازیابی می‌کنند. محرک‌های مواد حافظ شکلی به دو‌دسته کلی مستقیم و غیر‌مستقیم دسته‌بندی می‌شوند. تحریک مستقیم این مواد جهت بازیابی شکلی در برخی موارد ممکن نبوده و معرفی راهکارهایی جهت افزودن قابلیت تحریک غیر‌مستقیم به این مواد می‌تواند دامنه کاربرد این مواد را افزایش دهد. در این پژوهش سیم فلزی کروم-نیکل به‌‌عنوان عامل تقویت‌کننده جهت بهبود خواص مکانیکی و همچنین افزودن قابلیت تحریک غیر‌مستقیم مواد با اعمال اختلاف‌پتانسیل با استفاده از روش آغشته سازی هم‌زمان در فرآیند FDM استفاده‌شده است. افزودن الیاف پیوسته به روش آغشته‌­سازی همزمان در حین چاپ قطعات، افزایش چشم‌گیر خواص مکانیکی نمونه‌های پلیمری را به همراه دارد. مطابق نتایج به‌دست‌آمده برای سیم فلزی با قطر 0/15 میلی‌متری مقدار افزایش استحکام کششی برای نمونه‌های 5 و 10 درصدی به ترتیب برابر با 63 و 134 درصد بوده است. مقدار افزایش استحکام خمشی برای نمونه‌های تقویت‌شده با 5 و 10 درصد سیم فلزی به ترتیب برابر با 10 و 105 درصد بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of mechanical and thermal properties of continuous metal wire reinforced samples in fused deposition modeling for shape memory stimulus

نویسندگان [English]

  • Masoumeh Ghaemi Sarcheshmeh 1
  • َََAmir Hossein Behravesh 2
  • Seyyed Kaveh Hedayati 1
1 MSc Graduate, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2 Professor, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

In this study, samples reinforced with continuous metal wire as both a reinforcing component and a shape memory actuator were printed via the Fused Deposition Modeling (FDM) additive manufacturing method. Shape memory materials are a significant subset of smart materials that can recover their original shape in response to a specific stimulus such as heat, magnetism, electricity, moisture, etc. The stimuli for shape memory materials are generally classified into two main categories: direct and indirect. In some cases, direct stimulation may not be possible for shape recovery, and introducing solutions for adding indirect stimulation capability to these materials can expand their application range. In this study, the chromium-nickel metal wire was used as a reinforcing agent to improve the mechanical properties and introduce indirect stimulation capability to the materials by applying voltage simultaneously using the in-situ impregnation method in the FDM process. Adding continuous fibers through the in-situ impregnation method during the printing of parts significantly enhances the mechanical properties of polymeric samples. According to the obtained results for a 0.15 mm diameter metal wire, the increase in tensile strength for 5% and 10% reinforced samples was 63% and 134%, respectively. The increase in flexural strength for samples reinforced with 5% and 10% metal wire was 10% and 105%, respectively.

کلیدواژه‌ها [English]

  • Additive Manufacturing
  • Fused Deposition Modeling
  • Continuous Metal Wire
  • Mechanical Properties
  • Composites
[1] Yang L, Lou J, Yuan J, Deng. A review of shape memory polymers based on the intrinsic structures of their responsive switches. RSC Advances. 2021;11(46):28838-50. doi: 10.1039/D1RA04434F
[2] Li Y, Zhang F, Liu Y, Leng. 4D printed shape memory polymers and their structures for biomedical applications. Science China Technological Sciences. 2020;63(4):545-60. doi: 10.1007/s11431-019-1494-0
[3] Kabiri A, Liaghat G, Alavi F, Ansari M, Hedayati. A comparative study of 3D printing and heat-compressing methods for manufacturing the thermoplastic composite bone fixation plate: Design, characterization, and in vitro biomechanical experimentation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2021;235(12):1439-52. doi: 10.1177/09544119211034353
[4] Abidaryan S, Barmouz M, Hedayati. Effect of infill percentage and raster angle in fused deposition modeling (FDM) process on shape memory properties of poly (lactic acid) and comparison with compression molding. Iranian Journal of Manufacturing Engineering. 2020;7(5):14-23. [In Persian]
[5] Hedayati SK, Behravesh AH, Hasannia S, Saed AB, Akhoundi. 3D printed PCL scaffold reinforced with continuous biodegradable fiber yarn: A study on mechanical and cell viability properties. Polymer Testing. 2020;83:106347. doi: 10.1016/j.polymertesting.2020.106347
[6] Kabir SF, Mathur K, Seyam. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties. Composite Structures. 2020;232:111476. doi: 10.1016/j.compstruct.2019.111476
[7] Akhoundi B, Behravesh AH, Bagheri Saed. An innovative design approach in three-dimensional printing of continuous fiber–reinforced thermoplastic composites via fused deposition modeling process: in-melt simultaneous impregnation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2020;234(1-2):243-59. doi: 10.1177/0954405419843780
[8] Melenka GW, Cheung BK, Schofield JS, Dawson MR, Carey. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Composite Structures. 2016;153:866-75. doi: 10.1016/j.compstruct.2016.07.018
[9] Blok LG, Longana ML, Yu H, Woods. An investigation into 3D printing of fibre reinforced thermoplastic composites. Additive Manufacturing. 2018;22:176-86. doi: 10.1016/j.addma.2018.04.039
[10] Hedayati SK, Behravesh AH, Hasannia S, Kordi O, Pourghaumi M, Saed AB, Gashtasbi F. Additive manufacture of PCL/nHA scaffolds reinforced with biodegradable continuous Fibers: Mechanical Properties, in-vitro degradation Profile, and cell study. European Polymer Journal. 2022;162:110876. doi: 10.1016/j.eurpolymj.2021.110876
[11] Cho JW, Kim JW, Jung YC, Goo. Electroactive shape‐memory polyurethane composites incorporating carbon nanotubes. Macromolecular Rapid Communications. 2005;26(5):412-6. doi:1002/marc.200400492