شبیه‌سازی عددی فرآیند و ساخت پوسته جدار نازک مسی به روش جدید اتوکشی محدودشده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ‌التحصیل کارشناسی‌ارشد، دانشکده مهندسی مکانیک، دانشکدگان فنی، دانشگاه تهران، تهران، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشکدگان فنی، دانشگاه تهران، تهران، ایران

10.22034/ijme.2024.434030.1899

چکیده

یکی از فرایند­های پرکاربرد در صنعت شکل‌دهی, فرآیند اتوکشی است که معمولاً به‌­عنوان فرآیند ثانویه پس از فرآیند کشش عمیق کاربرد دارد. فرآیند اتوکشی به­‌منظور کاهش ضخامت دیوار، یکسان کردن توزیع ضخامت و همچنین افزایش طول مورد ­استفاده قرار می‌­گیرد. در بین روش­‌های ارائه­ شده روش اتوکشی محدود ­شده بالاترین نسبت کاهش ضخامت را ارائه می­‌دهد. اساس این روش تبدیل تنش­­ کششی فرآیند اتوکشی سنتی به تنش فشاری است. درصد کاهش ضخامت 65 درصد برای این پژوهش در نظر گرفته ­شده است به کمک نرم­‌افزار المان محدود شبیه‌­سازی ­شده و پوسته مسی جدار نازک با این روش ساخته ­شده است. در ­نهایت مشخص­ شده به دلیل تبدیل تنش­‌های کششی به تنش فشاری علاوه بر امکان دستیابی به کاهش ضخامت­‌های بالا این فرآیند موجب بهبود خواص مکانیکی پوسته شده است. این فرآیند به دلیل اعمال تنش فشاری و کرنش بالا به پوسته منجر به ریز شدن اندازه دانه و همچنین کشیده شدن آن شده است که بر روی خواص مکانیکی تاثیر­گذار بوده به‌­نحوی­که سختی نمونه از 48 ویکرز به 130 ویکرز رسیده است همچنین این فرآیند منجر به افزایش 120 درصدی استحکام کششی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation and fabrication of copper thin wall tube by constrained ironing method

نویسندگان [English]

  • Arya Kazemzadeh 1
  • Ghader Faraji 2
1 MSc Graduate, Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 Associate Professor, Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

One of the most widely used metal forming processes is Ironing, which is usually used as a secondary process after the deep drawing process. The Ironing process is used to reduce the wall thickness, equalize the thickness distribution of the wall, and also increase the length of the workpiece. Among the developed methods, the constrained Ironing method has provided the highest thickness reduction ratio. This method is based on converting the tensile stress to compressive stress in the deformation area. The thickness reduction percentage of 65% has been considered for this research which is simulated by the FEM method and after that experimental sample has been made by this method. Finally, due to the conversion of stress in the deformation area, this method provides the possibility of achieving a higher thickness reduction, and the mechanical properties of the sample were improved. This process, due to the application of compressive stress and high strain to the shell, has led to the reduction of the grain size and also its stretching, which has affected the mechanical properties in such a way that the microhardness of the sample has reached from 48 Vickers to 130 HV. Also, this process leads to a 120% increase in tensile strength.

کلیدواژه‌ها [English]

  • Constrained Ironing
  • Thickness Reduction Percentage
  • Finite Element Method
  • Microstructure
  • Mechanical Properties
[1] Handbook A. Forming and forging. ASM international. 1988;14:483.
[2] Modanloo V, Akhoundi B, Mashayekhi A, Talebi Ghadikolaee H, A.Z. Beygi. The study of forming of steel cups using hydrodynamic deep drawing process. Iranian Journal of Manufacturing Engineering. 2023 Mar 5;9:56-64. doi: 10.22034/IJME.2023.385634.1748 [In persian]
[3] Modanloo V, Akhoundi B, Dadgar Asl Y. Minimizing the required forming force in the sheet hydroforming process using a fractional factorial design. Iranian Journal of Manufacturing Engineering. 2023 jun 27;9:1-9. doi: 10.22034/IJME.2023.400065.1788 [In persian]
[4] Murty S, Sekhar VC. Experimental and theoretical investigation of the flexible-mandrel ironing process. Journal of Materials Processing Technology. 1993 may 5;41(2):213-26. doi: 10.1016/0924-0136(94)90062-0
[5] Kampuš Z, Nardin B. Improving workability in ironing. Journal of materials processing technology. 2002 oct 11;130:64-8. doi: 10.1016/S0924-0136(02)00783-5
[6] Tirosh J, Iddan D, Silviano M. Hydrostatic ironing—analysis and experiments. journal of manufacturing and engineering. 1992 May 1;114(2):237-43. doi: 10.1115/1.2899777
[7] Shirazi A, Abrinia K, Faraji G. Hydroironing: a novel ironing method with a higher thickness reduction. Materials and Manufacturing Processes. 2014 Sep 29;30(1):99-103. doi: 10.1080/10426914.2014.962659
[8] Khodsetan M, Faraji G, Abrinia K. A novel ironing process with extra high thickness reduction: constrained ironing. Materials and Manufacturing Processes. 2015 Jun 15;30(11):1324-8. doi: 10.1080/10426914.2015.1037898
[9] Suchy I. Handbook of die design: McGraw-Hill Education; 2006.
[10] Faraji G, Kim HS, Kashi HT. Severe Plastic Deformation: Methods, Processing and Properties. Elsevier; 2018 Jul 14. doi: 10.1016/C2016-0-05256-7
[11] Faregh SM, Faraji G, Mashhadi MM, Eftekhari M. Texture evolution and mechanical anisotropy of an ultrafine/nano-grained pure copper tube processed via hydrostatic tube cyclic expansion extrusion. International Journal of Minerals, Metallurgy and Materials. 2022 Nov 4;29(12):2241-2251. doi: 10.1007/s12613-022-2514-4
[12] Eftekhari M, Faraji G, Bahrami M. Processing of commercially pure copper tubes by hydrostatic tube cyclic extrusion–compression (HTCEC) as a new SPD method. achives of civil and mechanical engineering. 2021 Jul 28;21(120). doi: 10.1007/s43452-021-00272-w