بررسی تجربی خواص مکانیکی و الکتریکی کامپوزیت گرمانرم نیمه ‌زیست‌ تخریب‌پذیر کنف بافته شده/پلی‌پروپیلن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ‌التحصیل دکتری، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 فارغ‌التحصیل کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

3 دانشیار، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

10.22034/ijme.2023.412380.1820

چکیده

در این مقاله به فرآیند اصلاح سطح، ساخت و بررسی خواص مکانیکی و الکتریکی یک کامپوزیت نیمه زیست ‌تخریب‌پذیر تهیه شده از پلیمر پلی‌پروپیلن و پارچه الیاف کنف پرداخته شده است. تولید نمونه­های کامپوزیتی با استفاده انحلال پلیمر پلی‌پروپیلن در محلول زایلن و سپس ترکیب با پارچه الیاف تحت فشار و دمای پخت پرس گرم انجام شد. به منظور بهبود فصل مشترک الیاف و ماده زمینه و بهبود خواص مکانیکی نمونه‌های تولید شده، سطح پارچه الیاف کنف با استفاده از محلول 6 درصد سدیم هیدرواکسید به مدت 12 ساعت اصلاح سطح انجام شد. جهت تعیین خواص مکانیکی نمونه‌های تولید شده دو آزمون کشش و خمش سه نقطه انجام گرفت مدول الاستیک، تنش تسلیم، تنش نهایی، میزان حداکثر تغییر طول، و میزان چقرمگی از آزمون کشش اندازه‌گیری شدند و مورد تحلیل و بررسی قرار گرفتند استحکام خمشی و مدول الاستیک خمشی کامپوزیت از آزمون خمش به دست آمد. جهت تعیین و بررسی خواص الکتریکی کامپوزیت، آزمون ثابت دی‌الکتریک با استفاده از دستگاه تحلیلگر شبکه در باند x انجام شد بیشینه استحکام کششی و مدول یانگ کششی که در این پژوهش به دست آمد به ترتیب برابر با 8 مگاپاسکال و 6/1 گیگاپاسکال است. بیشینه ثابت دی‌­الکتریک و تانژانت تلفات نمونه‌­های تولیدی در باند x به ترتیب برابر با  48/3 و 24/0 است. درنهایت به منظور اعتبار سنجی نتایج به دست آمده در این تحقیق، نتایج آزمون‌های انجام شده با نتایج سایر مراجع در این زمینه مقایسه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental investigation of mechanical and electrical properties of semi-biodegradable polypropylene/hemp woven thermoplastic composite

نویسندگان [English]

  • Reza Sarkhosh 1
  • Hamid Arabqomi 2
  • Amin Farrokhabadi 3
1 PhD Graduate, Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2 MSc Graduate, Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
3 Associate Professor, Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

In this research, the process of surface modification, fabrication, and examination of the mechanical and electrical properties of a semi-biodegradable composite prepared from polypropylene and hemp fiber fabric has been discussed. Production of composite samples was done by dissolving polypropylene polymer in a xylene solution and then combining it with fiber fabric under pressure and temperature curing of a hot press. To improve the interface between the fibers and the matrix and to improve the mechanical properties of the produced samples, the surface of the hemp fiber fabric was modified using a 6% sodium hydroxide solution for 12 hours. To determine the mechanical properties of the produced samples, two tensile and three-point bending tests were performed. The elastic modulus, yield stress, ultimate stress, elongation, and toughness were measured from the tensile test and were analyzed and investigated. The bending of the composite was obtained from the bending test. To determine the electrical properties of the composite, the dielectric constant test was performed using a network analyzer in the x band. The maximum tensile strength and Young's modulus obtained in this research are 8 MPa and 1.6 GPa respectively. The maximum dielectric constant and loss tangent of the produced samples in the x-band is equal to 3.48 and 0.24, respectively. Finally, to validate the results obtained in this research, the results of the tests have been compared with the results of other authorities in this field.

کلیدواژه‌ها [English]

  • Semi-biodegradable Composite
  • Hemp Fiber Fabric
  • Polypropylene
  • Mechanical Properties
  • Dielectric Constant
[1] Wirawan R, Zainudin ES, Sapuan SM. Mechanical properties of natural fibre reinforced PVC composites: A review. Sains Malaysiana. 2009 Aug 1;38(4):531-5.
[2]  Saheb DN, Jog JP. Natural fiber polymer composites: a review. Advances in Polymer Technology: Journal of the Polymer Processing Institute. 1999 Dec;18(4):351-63. doi: 10.1002/(SICI)1098-2329(199924)18:4%3c351::AID-ADV6%3e3.0.CO;2-X
[3]  Al-Oqla FM, Sapuan SM. Materials selection for natural fiber composites. Woodhead Publishing; 2017 Jun 9.
[4]  Al-Oqla FM, Sapuan SM. Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production. 2014 Mar 1;66:347-54. doi: 10.1016/j.jclepro.2013.10.050
[5]  P.K. Bajpai, I. Singh, J.Madaan, Development and characterization of PLA-based green composites: A review, Journal of Thermoplast Composite Material, Vol. 27, No. 1, pp.52-81,2014. doi: 10.1177/0892705712439571
[6]  Dicker MP, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM. Green composites: A review of material attributes and complementary applications. Composites part A: applied science and manufacturing. 2014 Jan 1;56:280-9. doi: 10.1016/j.compositesa.2013.10.014
[7]  Lyn N. Effect of the chemical treatment on the inorganic content of Kenaf fibers and on the performance of Kenaf-polypropylene composites (Master's thesis, University of Waterloo). doi: 10012/13979
[8]  Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS. A review on natural fiber reinforced polymer composite and its applications. International journal of polymer science. 2015 Oct 1;2015. doi: 10.1155/2015/243947
[9]  Saba N, Md Tahir P, Jawaid M. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers. 2014 Aug 22;6(8):2247-73. doi: 10.3390/polym6082247
[10] Siakeng R, Jawaid M, Ariffin H, Sapuan SM, Asim M, Saba N. Natural fiber reinforced polylactic acid composites: A review. Polymer Composites. 2019 Feb;40(2):446-63. doi: 10.1002/pc.24747
[11] AL-Oqla FM, Omari MA. Sustainable biocomposites: challenges, potential and barriers for development. Green biocomposites: manufacturing and properties. 2017:13-29.
[12] Koohestani BA, Darban AK, Mokhtari P, Yilmaz ER, Darezereshki ES. Comparison of different natural fiber treatments: a literature review. International Journal of Environmental Science and Technology. 2019 Jan 29;16:629-42. doi: 10.1007/s13762-018-1890-9
[13] da Luz J, Losekann MA, dos Santos A, Halison de Oliveira J, Girotto EM, Moises MP, Radovanovic E, Fávaro SL. Hydrothermal treatment of sisal fiber for composite preparation. Journal of Composite Materials. 2019 Jul;53(17):2337-47. doi: 10.1177/0021998319826384
[14] Darus SA, Ghazali MJ, Azhari CH, Zulkifli R, Shamsuri AA, Sarac H, Mustafa MT. Physicochemical and thermal properties of lignocellulosic fiber from Gigantochloa Scortechinii bamboo: Effect of steam explosion treatment. Fibers and Polymers. 2020 Oct;21:2186-94. doi: 10.1007/s12221-020-1022-2
[15] Ajouguim S, Abdelouahdi K, Waqif M, Stefanidou M, Saâdi L. Modifications of Alfa fibers by alkali and hydrothermal treatment. Cellulose. 2019 Feb 15;26:1503-16. doi: 10.1007/s10570-018-2181-9
[16] Romero-Zúñiga GY, González-Morones P, Sánchez-Valdés S, Yáñez-Macías R, Sifuentes-Nieves I, García-Hernández Z, Hernández-Hernández E. Microwave radiation as alternative to modify natural fibers: Recent trends and opportunities–A review. Journal of Natural Fibers. 2022 Oct 28;19(14):7594-610. doi: 10.1080/15440478.2021.1952140
[17] Wang L, Li A, Chang Y. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge. Water research. 2017 Apr 1;112:72-82. doi: 10.1016/j.watres.2017.01.034
[18] Meon MS, Othman MF, Husain H, Remeli MF, Syawal MS. Improving tensile properties of kenaf fibers treated with sodium hydroxide. Procedia Engineering. 2012 Jan 1;41:1587-92. doi: 10.1016/j.proeng.2012.07.354
[19] Asumani O, Paskaramoorthy R. Fatigue and impact strengths of kenaf fibre reinforced polypropylene composites: Effects of fibre treatments. Advanced Composite Materials. 2021 Mar 4;30(2):103-15. doi: 10.1080/09243046.2020.1733308
[20] Nematollahi M, Karevan M, Fallah M, Farzin M. Experimental and numerical study of the critical length of short kenaf fiber reinforced polypropylene composites. Fibers and Polymers. 2020 Apr;21:821-8. doi: 10.1007/s12221-020-9600-x
[21] Sosiati H, Shofie YA, Nugroho AW. Tensile properties of Kenaf/E-glass reinforced hybrid polypropylene (PP) composites with different fiber loading. doi: 10.5109/1936210
[22] Judawisastra H, Refiadi G. Permanganate Treatment Optimization on Tensile Properties and Water Absorption of Kenaf Fiber-Polypropylene Biocomposites. International Journal of Automotive and Mechanical Engineering. 2022 May 10;19(1):9623-33. doi: 10.15282/ijame.19.1.2022.23.0742
[23] Mirbagheri J, Tajvidi M, Hermanson JC, Ghasemi I. Tensile properties of wood flour/kenaf fiber polypropylene hybrid composites. Journal of Applied Polymer Science. 2007 Sep 5;105(5):3054-9. doi: 10.1002/app.26363
[24] Islam MR, Beg MD, Gupta A. Characterization of alkali-treated kenaf fibre-reinforced recycled polypropylene composites. Journal of Thermoplastic Composite Materials. 2014 Jul;27(7):909-32. doi: 10.1177/0892705712461511
[25] Manral A, Bajpai PK. Analysis of properties on chemical treatment of kenaf fibers. Materials Today: Proceedings. 2021 Jan 1;40:S35-8. doi: 10.1016/j.matpr.2020.03.266
[26] Hamidon MH, Sultan MT, Ariffin AH, Shah AU. Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. Journal of Materials Research and Technology. 2019 May 1;8(3):3327-37. doi: 10.1016/j.jmrt.2019.04.012
[27] Bhuvaneswari HB, Reddy N. A review on dielectric properties of biofiber-based composites. Advanced composites and hybrid materials. 2018 Dec;1:635-48. doi: 10.1007/s42114-018-0053-2
[28] Sarkhosh R, Zarei H. Design, Manufacturing and mechanical and electrical properties evaluation of glass fiber reinforced PTFE polymer matrix composites. Modares Mechanical Engineering. 2021 Jan 10;21(2):117-27. [In Persian]
[29] Sarkhosh, R., Arabqomi, H., Farrokhabadi, A. Design, manufacturing, and evaluation of mechanical and electrical properties of biodegradable epoxy/hemp composite produced by VARTM method. Journal of Aeronautical Engineering, 2022; 24(1): 70-82. doi: 10.22034/joae.2022.315690.1069 [In Persian]
[30] Talei-Fard, E., Parsa, H., Eskandari Jam, J. Investigation of tensile strength and dielectric constant of GFRP composite. Journal of Science and Technology of Composites, 2021; 8(3): 1714-1708. doi: 10.22068/jstc.2022.546100.1767 [In Persian]
[31] Rahimi Pishbijari, M., Eskandari Jam, J., Heydari Beni, M. Design and Develpoment of Polymer Based Composite in Order to Minimize the RCS. Journal of Science and Technology of Composites, 2020; 7(3): 1047-1056. doi: 10.22068/jstc.2020.120113.1628 [In Persian]
[32] ASTM D3039/D3039M. Standard Test Method for Tensile Properties of Polymer Matrix CompositeMaterials. Annu B ASTM Stand, 2014.
[33] ASTM D7264/D7264M-15. Standard test method for flexural properties of polymer matrix composite materials. 2015.
[34] Lee CY, Chang CW. Dielectric constant enhancement with low dielectric loss growth in graphene oxide/mica/polypropylene composites. Journal of composites science. 2021 Feb 8;5(2):52. doi: 10.3390/jcs5020052