بررسی و مقایسه خواص مکانیکی کامپوزیت الیاف ممتد ABS/GF و پلیمر ABS تولیدشده با روش لایه نشانی تجمعی مذاب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 دانشیار، مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

3 دکتری، مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

چکیده

مقاله پیش رو به بررسی خواص مکانیکی نمونه‌های کامپوزیتی با الیاف ممتد شیشه و ماتریس ترموپلاستیک ABS ساخته شده با روش ساخت افزایشی FDM پرداخته است. چاپگر طراحی شده برای تولید این کامپوزیت از فیلامنت پلیمری ABS و فیلامنت کامپوزیتی پیش آغشته ABS/GF استفاده می‌کند. فیلامنت پیش آغشته توسط یک خط تولید فیلامنت طراحی و تولید شده است. به منظور ساخت چاپگر سه‌بعدی با قابلیت چاپ کامپوزیت، یک چاپگر FDM به‌گونه‌ای تحت اصلاح قرار گرفت که توانایی چاپ کامپوزیت را داشته باشد. در نهایت بعد از ساخت چاپگر سه‌بعدی با قابلیت چاپ کامپوزیت، نمونه­‌های مورد نیاز برای آزمون کشش و خمش سه‌نقطه چاپ شد و آزمون خواص مکانیکی طبق استانداردهای موجود بر روی آن­‌ها صورت گرفت. خواص به‌دست‌آمده با نمونه ABS خالص چاپ شده نیز مورد مقایسه قرار گرفت. مدول الاستیسیته و استحکام کششی نمونه ABS/GF نسبت به نمونه ABS خالص چاپ شده به ترتیب 540 و 260 درصد رشد داشته است. بر اساس آزمون خمش سه‌نقطه، مدول و استحکام خمشی کامپوزیت چاپ شده به ترتیب 140 و 100 درصد نسبت به نمونه خالص پلیمری افزایش پیدا کرده است. مدت زمان ساخت نمونه کامپوزیت به‌وسیله چاپگر FDM در مقایسه با چاپ پلیمری اختلاف چندانی ندارد اما به دلیل وجود الیاف ممتد شیشه یا سایر الیاف تقویت‌کننده، خواص مکانیکی نمونه ساخته شده، بهبود قابل توجهی پیدا کرده است؛ به همین دلیل استفاده از این روش در مقایسه با روش چاپ FDM با پلیمر خالص قابل توجیه است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating and comparing the mechanical properties of ABS/GF continuous fiber composite and ABS polymer produced by fused deposition modeling method

نویسندگان [English]

  • Amir Mohammad Manouchehri 1
  • Mohammad Golzar 2
  • Ali Masoudi 1
  • Hadi Ghorbani 3
1 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
3 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

The upcoming article investigates the mechanical properties of FDM printed composite material with continuous glass fibers and ABS matrix. The printer designed to produce this composite uses ABS polymer filament and ABS/GF pre-impregnated composite filament. Pre-impregnated filament is designed and produced by a filament production line. In order to build a 3D printer with composite printing capability, a normal FDM printer was subjected to modifications in the structure and nozzle. Finally, after building a 3D printer with composite printing capability, tensile and bending samples were printed and the mechanical properties were tested according to standard instructions. The obtained properties were also compared with the printed pure ABS sample. The modulus of elasticity and tensile strength of the ABS/GF sample has increased by 540% and 260%, respectively, compared to the printed pure ABS sample. Based on the three-point bending test, the modulus and flexural strength of the printed composite have increased by 140% and 100%, respectively, compared to the pure polymer sample. The duration of making composite by FDM printer is not much different compared to polymer printing, but due to the presence of continuous glass fibers or other reinforcing fibers it greatly improves the mechanical properties of the manufactured sample, that's why the use of this method can be justified compared to FDM printing with pure polymer method.

کلیدواژه‌ها [English]

  • Additive manufacturing
  • Thermoplastic materials
  • Fused deposition modeling 3D printer
  • Continuous fiber composite
[1] J. Tang, ,Development Status and Prospects of Aerospace Composite Materials, Spacecraft Environmental Engineering, pp. 352-359, 2013. https://doi.org/10.1088/1755-1315/632/5/052038)
[2] W. Zhuo, O. Feng, Application of advanced composite materials in aerospace, New technology & new process, vol. 10, pp. 76-79, 2012.
[3] H. Zhao, X. Liu, W. Zhao, G. Wang, B. Liu, An Overview of Research on FDM 3D Printing Process of Continuous Fiber Reinforced Composites, in Journal of Physics: Conference Series, 2019, vol. 1213, no. 5: IOP Publishing, p. 052037. https://doi.org/10.1088/1742-6596/1213/5/052037
[4] X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective, Composites Part B: Engineering, vol. 110, pp. 442-458, 2017. https://doi.org/10.1016/j.compositesb.2016.11.034
[5] X. Xu, Z. Zhou, Y. Hei, B. Zhang, J. Bao, X. Chen, Improving compression-after-impact performance of carbon–fiber composites by CNTs/thermoplastic hybrid film interlayer, Composites science and technology, vol. 95, pp. 75-81, 2014. https://doi.org/10.1016/j.compscitech.2014.01.023
[6] B. Alcock, N.O. Cabrera, N.M. Barkoula, Z. Wang, T. Peijs, The effect of temperature and strain rate on the impact performance of recyclable allpolypropylene composites, Composites Part B: Engineering, vol. 39, no. 3, pp. 537-547, 2008. https://doi.org/10.1016/j.compositesb.2007.03.003
[7] J. Joudaki, A. Naghavi Alhoseini, Comparison of Tensile Strength for 3D Printed Parts Fabricated by Fused Deposition Modeling (FDM), Iranian Journal of Manufacturing Engineering, vol. 9, no. 5, pp. 40-48, 2022. (in Persian) https://doi.org/10.22034/ijme.2022.160058
[8] E. R. Ghomi, F. Khosravi, R. E. Neisiany, S. Singh, S. Ramakrishna, Future of additive manufacturing in healthcare, Current Opinion in Biomedical Engineering, vol. 17, pp. 100255, 2021. https://doi.org/10.1016/j.cobme.2020.100255
[9] A. Standard, Standard terminology for additive manufacturing technologies, ASTM International F2792-12a, 2012.
[10] A. Goyanes, A. B. Buanz, A. W. Basit, S. Gaisford, Fused-filament 3D printing (3DP) for fabrication of tablets, International journal of pharmaceutics, vol. 476, no. 1-2, pp. 88-92, 2014. https://doi.org/10.1016/j.ijpharm.2014.09.044
[11] A. M. Hespel, R. Wilhite, J. Hudson, Invited review‐applications for 3d printers in veterinary medicine, Veterinary Radiology & Ultrasound, vol. 55, no. 4, pp. 347-358, 2014. https://doi.org/10.1111/vru.12176
[12] Li, Dantong, Xiaobao Feng, Ping Liao, Hongjun Ni, Yidan Zhou, Mingyu Huang, Zhiyang Li, Yu Zhu. 3D reverse modeling and rapid prototyping of complete denture. In Frontier and Future Development of Information Technology in Medicine and Education: ITME 2013, pp. 1919-1927, 2014. https://doi.org/10.1007/978-94-007-7618-0_226
[13] M. Behzadnasab, M. Hosseini, Optimization of Physical-Mechanical Properties of light cure Resins for use in 3D printing by micro and nano additives for industrial applications, Iranian Journal of Manufacturing Engineering, vol. 6, no. 8, pp. 33-42, 2020. (in Persian)
[14] S. E. Hudson, Printing teddy bears: a technique for 3D printing of soft interactive objects, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 459-468, 2014. https://doi.org/10.1145/2556288.2557338
[15] J. Wang, A. Goyanes, S. Gaisford, A. W. Basit, Stereolithographic (SLA) 3D printing of oral modified-release dosage forms, International journal of pharmaceutics, vol. 503, no. 1-2, pp. 207-212, 2016. https://doi.org/10.1016/j.ijpharm.2016.03.016
[16] D. Ahn, J.-H. Kweon, J. Choi, S. Lee, Quantification of surface roughness of parts processed by laminated object manufacturing, Journal of Materials Processing Technology, vol. 212, no. 2, pp. 339-346, 2012. https://doi.org/10.1016/j.jmatprotec.2011.08.013
[17] S. Abidaryan, M. Barmouz, S. K. Hedayati, Effect of infill percentage and raster angle in fused deposition modeling (FDM) process on shape memory properties of poly (lactic acid) and comparison with compression molding, Iranian Journal of Manufacturing Engineering, vol. 7, no. 5, pp. 14-23, 2020. (in Persian)
[18] B. N. Turner, R. Strong, S. A. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling, Rapid prototyping journal, 2014. https://doi.org/10.1108/RPJ-01-2013-0012
[19] M. Heidari-Rarani, M. Rafiee-Afarani, A. Zahedi, Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites, Composites Part B: Engineering, vol. 175, p. 107147, 2019. https://doi.org/10.1016/j.compositesb.2019.107147
[20] A. K. Sood, R. K. Ohdar, S. S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts, Materials & Design, vol. 31, no. 1, pp. 287-295, 2010. https://doi.org/10.1016/j.matdes.2009.06.016
[21] J. R. C. Dizon, A. H. Espera Jr, Q. Chen, R. C. Advincula, Mechanical characterization of 3D-printed polymers, Additive manufacturing, vol. 20, pp. 44-67, 2018. https://doi.org/10.1016/j.addma.2017.12.002
[22] Y. Song, Y. Li, W. Song, K. Yee, K.Y. Lee, V. L. Tagarielli, Measurements of the mechanical response of unidirectional 3D-printed PLA, Materials & Design, vol. 123, pp. 154-164, 2017. https://doi.org/10.1016/j.matdes.2017.03.051
[23] S. M. Mousavi Kani, M. Sadegh Yazdi, M. H. Hosseinzadeh, Influence of infill density and printing pattern on flexural properties of 3D printed short carbon fiber PLA composite, Iranian Journal of Manufacturing Engineering, vol. 7, no. 9, pp. 42-51, 2020. (in Persian)
[24] A. Gholizadeh Roshan, A. Zolfaghari, M. Shakeri, Investigation of physical and mechanical properties of 3D printed parts by using of ABS plastic filaments filled by alumina, Iranian Journal of Manufacturing Engineering, vol. 7, no. 4, pp. 1-9, 2020. (in Persian)
[25] P. Parandoush, D. Lin, A review on additive manufacturing of polymer-fiber composites, Composite Structures, vol. 182, pp. 36-53, 2017. https://doi.org/10.1016/j.compstruct.2017.08.088
[26] H. L. Tekinalp, V. Kunc, G. M. Velez-Garcia, C. E. Duty, L. J. Love, A. K. Naskar, C. A. Blue, S. Ozcan, Highly oriented carbon fiber–polymer composites via additive manufacturing, Composites Science and Technology, vol. 105, pp. 144-150, 2014. https://doi.org/10.1016/j.compscitech.2014.10.009
[27] W. Zhong, F. Li, Z. Zhang, L. Song, Z. Li, Short fiber reinforced composites for fused deposition modeling, Materials Science and Engineering: A, vol. 301, no. 2, pp. 125-130, 2001. https://doi.org/10.1016/S0921-5093(00)01810-4
[28] X. Tian, T. Liu, Q. Wang, A. Dilmurat, D. Li, G. Ziegmann, Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites, Journal of cleaner production, vol. 142, pp. 1609-1618, 2017. https://doi.org/10.1016/j.jclepro.2016.11.139
[29] N. Li, Y. Li, S. Liu, Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing, Journal of Materials Processing Technology, vol. 238, pp. 218-225, 2016. https://doi.org/10.1016/j.jmatprotec.2016.07.025
[30] D.-A. Türk, F. Brenni, M. Zogg, M. Meboldt, Mechanical characterization of 3D printed polymers for fiber reinforced polymers processing, Materials & Design, vol. 118, pp. 256-265, 2017. https://doi.org/10.1016/j.matdes.2017.01.050
[31] S. Liu, Y. Li, N. Li, A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures, Materials & Design, vol. 137, pp. 235-244, 2018. https://doi.org/10.1016/j.matdes.2017.10.007
[32] F. Ghebretinsae, O. Mikkelsen, A. Akessa, Strength analysis of 3D printed carbon fibre reinforced thermoplastic using experimental and numerical methods, in IOP conference series: materials science and engineering, vol. 700, no. 1, 2019. https://doi.org/10.1088/1757-899X/700/1/012024
[33] J. Justo, L. Távara, L. García-Guzmán, F. París, Characterization of 3D printed long fibre reinforced composites, Composite Structures, vol. 185, pp. 537-548, 2018. https://doi.org/10.1016/j.compstruct.2017.11.052