بررسی رفتار تغییرشکل گرم و خواص حافظه‌داری آلیاژ حافظه‌دار دمای بالا Ni50Ti40Hf10

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده عمران و منابع زمین، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران

چکیده

آلیاژهای حافظه‌­دار NiTiHf برای کاربردهای صنعتی در دمای بالا بدلیل دمای استحاله بالا و پایداری حرارتی و قیمت پایین­‌تر، بسیار مورد توجه می‌­باشد. البته خواص حافظه‌­داری آنها از آلیاژهای دوتایی NiTi کمتر می‌­باشد. راه حل این مشکل افزایش استحکام آلیاژ جهت جلوگیری از وقوع تغییرشکل پلاستیکی ناشی از لغزش می‌­باشد. یکی از راه‌های بهبود خواص حافظه‌­داری انجام عملیات ترمومکانیکی می‌­باشد. در این پژوهش آلیاژ Ni50Ti40Hf10 در کوره قوس تحت خلاء آلیاژسازی و ریخته گری شد. سپس آزمون کشش گرم بر روی نمونه­‌ها با نرخ کرنش s-1 01/0 در دماهای 800، 900، 1000 و 1100 درجه سانتی‌گراد انجام شد. همچنین نمونه‌­ها در دمای 1000 درجه سانتی‌گراد با کاهش ضخامت‌­های 10، 15، 20 و 30 درصد نورد گرم شدند. جهت بررسی خواص حافظه‌­داری و تعیین میزان کرنش بازیابی و نسبت بازیابی با استفاده از آزمون خمش کرنش‌های اعمالی 6/2 تا 6 به روی نمونه­‌ها اعمال شد. نتایج آزمون کشش گرم نشان داد که دمای 1000 درجه سانتی‌گراد به دلیل مناسب بودن میزان شکل‌­پذیری آلیاژ برای انجام نورد گرم قابل قبول می‌­باشد. حداکثر کرنش بازیابی در نمونه ریختگی 7/5 با نسبت بازیابی 88 درصد بود. با اعمال 10 درصد نورد گرم، میزان کرنش بازیابی و نسبت بازیابی به 8/5 و 92 افزایش یافت و در ادامه با اعمال 20 درصد نورد این مقادیر به 9/5 و 94 افزایش یافت. تشکیل دانه­‌های یکنواخت و هم محور در ریزساختار نمونه­‌ها حاکی از وقوع تبلور مجدد دینامیکی می­‌باشد که منجر به افزایش میزان کرنش بازیابی گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating Hot Deformation Behavior and Shape Memory Properties of Ni50Ti40Hf10 High Temperature Shape Memory Alloy

نویسنده [English]

  • Majid Belbasi
Department of Civil and Earth resources, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

NiTiHf high temperature shape memory alloys are highly popular for high temperature industrial applications due to their high transformation temperature, thermal stability and lower cost. However, they have weaker shape memory properties than NiTi binary alloys. The solution to this problem is to increase the strength of the alloy in order to prevent plastic deformation caused by slipping. Thermomechanical treatment is a method to improve the recovery strain. In this research, the Ni50Ti40Hf10 shape memory alloy was cast by vacuum arc melting and then the hot tensile test was performed on the samples with a strain rate of 0.01 s-1 at 800, 900, 1000 and 1100 °C, also specimens were hot- rolled at 1000 °C with a reduction of thicknesses by 10, 15, 20 and 30%.  To determine the amount of recovery strain and recovery ratio by bending test strains of 2.6 to 6 were applied to the samples. The results of the hot tensile test showed that the temperature of 1000 °C is acceptable for hot rolling due to the suitable ductility of the alloy. The maximum recovery strain in the cast sample was 5.7 with a recovery ratio of 88%. By applying 10% of hot rolling, the recovery strain and recovery ratio increased to 5.8 and 92 respectively, while after 20% of rolling, these values increased to 5.9 and 94. The formation of uniform and coaxial grains in the microstructure of the samples indicated the occurrence of dynamic recrystallization, which led to an increase in the recovery strain.

کلیدواژه‌ها [English]

  • NiTiHf shape memory alloys
  • Hot rolling
  • Hot tensile
  • Recovery strain
  • Recovery ratio
[1] M. Mohri, M. Nili-Ahmadabadi, J. Ivanisenko, R. Schwaiger, H. Hahn and V. Sai Kiran Chakravadhanula, Microstructure and Mechanical Behavior of a Shape Memory Ni–Ti Bi-layer Thinfilm, Journal of Thin Solid Films, Vol. 583, pp. 245–254, 2015.
[2] S. S. Hoseyni norabadi, M. Niliahmadabadi, The effect of hafnium element in the amount of 3% on the transformation behavior and superelastic properties of nickel-rich NiTi shape memory alloy, Journal of Metallurgical Engineering, Vol. 3, pp. 169-177, 2019 (in persian).
[3] M. Belbasi, M.T. Salehi, Influence of chemical composition and melting process on hot rolling of NiTiHf shape memory alloy, Material Engineering Performance, Vol. 23, pp. 2368–2372, 2014.
[4] Benafan, G. S.Bigelow, D. A. Scheiman, Transformation behavior in NiTi-20Hf shape memory alloys – Transformation temperatures and hardness, Scripta Materiala, Vol. 147, pp. 11-15, 2018.
[5] H. E. Karaca,  E. Acar, H. Tobe,  S. M. Saghaian, NiTiHf-based shape memory alloys, Materials Science Technology, Vol. 30, pp. 1530-1544, 2014.
[6] J. Chen, Z. Shengwang , Z. Yonghao, J. Zhang, W. Yuhua, Q. Yang, A study on the cold workability and shape memory effect of NiTiHf-Nb eutectic high-temperature shape memory alloy, Intermetallics , pp. 127-134 , 2020.
[7] W. Cai, X.L. Meng, L.C. Zhao, Recent Development of TiNi-Based Shape Memory Alloys, Current Opinion in Solid State and Materials Science, Vol. 9, pp. 296-302, 2005.
[8] B. Karaman, R. Noebe , J. Pons, R. Santamarta, Effect of aging on the martensitic transformation characteristics of a Ni-Rich NiTiHf high temperature shape memory alloy, Functional Materials Letters, Vol. 5, pp. 381-385, 2012.  
[9] F. Dalle, E. Perrin, P. Vermaut, M. Masse, R. Portier, Interface Mobility in Ni49.8Ti42.2Hf8 Shape Memory Alloy, Acta Materialia, Vol. 50, pp. 3557-3565, 2002.
[10] O. Karakoc, K.C. Atli, A. Evirgen, J. Pons, R. Santamarta, O. Benafan, R.D. Noebe, I. Karaman, Effects of training on the thermomechanical behavior of NiTiHf and NiTiZr high temperature shape memory alloys, Materials Science & Engineering A, Vol. 10, pp. 794-800, 2020.
[11] X. L. Meng, Y.X. Tong, K.T. Lau, W. Cai , L.M. Zhou , L.C. Zhao, Effect of Cu Addition on Phase Transformation of Ti–Ni–Hf High-Temperature Shape Memory Alloys, Materials Letters, Vol. 57, pp. 452–456, 2002.
[12] S. Baradari, N. Resnina, S, Belyaev, M. Nili-Ahmadabadi, Martensitic phase transformation and shape memory properties of the as-cast NiCuTiHf and NiCuTiHfZr alloys, Journal of Alloys and Compounds, Vol. 888, pp. 125-134, 2021.
[13] S. F. Hsieha, S. Wu, Martensitic transformation of quaternaryTi50.5-XNi49.5ZrX/2HfX/2 (X = 0±20 at. %) shape memory alloys, Materials Characteristic, Vol. 45, PP. 143-152, 2000.
[14] R. Prasad, V. S. Park, C. H. Kim, S. W. Hong, J. K. Yeom, Microstructure and phase transformation behavior of a new high temperature NiTiHf-Ta shape memory alloy with warms formability, Journal of Alloys and Compounds, Vol. 697, pp. 55-61, 2017.
[15] Y. X. Tong, X.M. Fan, A.V. Shuitcev, F.Chen, B.Tian, L.Li, Y.F.Zheng, Effects of Sc addition and aging on microstructure and martensitic transformation of Ni-rich NiTiHfSc high temperature shape memory alloys, Journal of Alloys and Compounds, Vol. 845, pp. 156-162, 2020.
[16] E. Acar, H.E. Karaca, H. Tobe, R.D. Noebe, Y.I. Chumlyakov, Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy, Journal of Alloys and Compounds, Vol. 578, pp. 297-302, 2013.
[17] O. Benafan, G.S. Bigelow, D.A. Scheiman, Transformation behavior in NiTi-20Hf shape memory alloys – Transformation temperatures and hardness, Scripta Materialia, Vol. 146, pp. 251-254, 2018.
[18] N. Babacan, M. Bilal, C. Hayrettin, J. Liu, O. Benafan, I. Karaman , Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy, Acta Materialia, Vol. 157, PP. 228-244, 2018.
[19] A. Evirgen, I. Karaman, R. Santamarta, J. Pons, R.D. Noebe, Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy, Acta Materials, Vol. 83, pp. 48-60, 2015.
[20] H. R. Rezai Ashtiani, M. Mohammadi, Prediction of hot deformation behavior of 304 stainless steel using Johnson-Cook equation, Iranian Journal of Manufacturing Engineering, Vol. 8, pp. 34- 43, 2022 (in Persian)
[21] X. L. Meng, Y.D. Fu, Q.F. Li, J.X. Zhang, W. Cai, L.C. Zhao, Shape-Memory Behaviors in an Aged NiRich TiNiHf High Temperature Shape-memory Alloy. Intermetallics, Vol. 16, PP. 698-705, 2008.
[22] M. Belbasi, M.T. Salehi, S.A.A Akbari Mosavi, S.M. Ebrahimi, A study on mechanical behavior and microstructure of NiTiHf shape memory alloy under hot deformation, Materials Science Engineering A, Vol. 506, pp. 96-102, 2013.
[23] T. Sakuma, Y. Mihara, Y. Ochi, K. Yamauchi, Effect of prestrain on Transformation and Deformation Behavior in Ti–50 at%Ni Shape Memory Alloy, Materials Transactions, Vol. 47, pp. 728-734, 2006.
[24] X. L. Meng, Y.D. Fu, Q.F. Li, J.X. Zhang, W. Cai, L.C. Zhao, Shape-memory behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy. Intermetallics, Vol. 16, pp. 698-705, 2008.
[25] M. Belbasi, Effect of cold rolling process on recovery strain and recovery ratio of Ni50Ti40Hf10 shape memory alloy, Journal of new materials, Vol. 35, pp. 27-38, 2019 (in persian).
[26] E.P. Ryklina, S.D. Prokoshkin, A.Y Kreytsberg, Abnormally high recovery strain in Ti–Ni-based shape memory alloys, Journal of Alloys and Compounds, Vol. 577, pp. 255-258, 2013.