بررسی تجربی رفتار مکانیکی ساختار اینفینیتی الهام گرفته شده از پیله کرم ابریشم و مقایسه آن با ساختار میله‌ای جهت استفاده در ساختارهای سلولی معماری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه معماری، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران

2 استادیار، گروه معماری، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران

3 استادیار، مهندسی پلیمر، گروه رنگ، پژوهشکده فرایند پلیمرها، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران

4 استادیار، گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران

5 دانشیار، دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیر الدین طوسی، ایران

چکیده

ساختارهای سلول باز، ساختارهای سلولی معماری شده­‌ای با یک هندسه تناوبی تعیین شده می‌باشند. پیله کرم ابریشم می‌تواند به عنوان یک ساختار طبیعی جهت طراحی سلول‌های ساختار باز مورد استفاده قرار گیرد. پیله ابریشم  از یک ساختار سلسه مراتبی با عملکرد چندگانه تشکیل شده است که طی میلیون‌­ها سال جهت ایجاد شرایط بهینه برای دگردیسی و حفظ جان حشره در مقابل شکارچیان تکامل یافته است. در این مقاله با الهام گیری از ساختار حلقه اینفینیتی که توسط کرم ابریشم در ساخت پیله بکار می­‌رود، ساختارهایی سلول باز، جهت بررسی خواص مکانیکی طراحی شد. به این منظور براساس فرمول ماکسول در طراحی ساختارهای سلول باز میله‌­ای، نمونه­‌های مختلف تشکیل شده از میله­‌های مستقیم و یا ساختار دارای حلقه اینفینتی با پارامترهای متفاوت با استفاده از روش چاپ FDM ساخته شد. پس از ساخت قطعات، آزمون تنش کششی محوری بر روی نمونه­‌ها انجام گرفت. نتایج بدست آمده نشان داد که ساختارهای سلولی طراحی شده براساس حلقه‌­های بکار رفته در پیله کرم ابریشم بصورت تک لایه غیر ایزوتروپیک بوده و رفتار مکانیکی متفاوتی در جهات مختلف از خود نشان می‌دهند. اگرچه ساختارهای سلولی اینفنیتی از مدول کششی و استحکام کمتری برخوردارند اما کرنش الاستیک بزرگتر و روند تدریجی شکست و در نتیجه تبدیل مدول کششی به خمشی در این ساختار از مزایای مهم آنها به حساب می‌آید که در کاربردهای مختلف مانند ساندویچ پنل‌­های ساختمانی که وظیفه تحمل بار را ندارند، می‌توانند مورد توجه قرار بگیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the mechanical behavior of the infinity structure inspired by the silkworm cocoon and comparing it with the rod structure for use in architectural cellular structures

نویسندگان [English]

  • Mostafa Hosseini Vajari 1
  • Hossein Moradi Nasab 2
  • Morteza Behzadnasab 3
  • Mahmoud Nikkhah Shahmirzadi 4
  • Majid Soltani 5
1 Department of Architecture, Semnan Branch, Islamic Azad University, Semnan, Iran
2 Department of Architecture, Semnan Branch, Islamic Azad University, Semnan, Iran
3 Color Department, Polymer Process Research Institute, Iran Polymer and Petrochemical Research Institute, Tehran, Iran
4 Department of Civil Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran
5 Faculty of Mechanical Engineering, khajeh Nasir Toosi University of Technology, Iran
چکیده [English]

Open cell structures are architectural cell structures with a determined periodic geometry that can be designed parametrically based on mathematical models or simulations of nature. The silkworm cocoon can be used as a natural structure to design open structure cells. The silk cocoon consists of a hierarchical structure with multiple functions, which have evolved over millions of years to create optimal conditions for metamorphosis and preserving the life of the insect against Predators. In this article, inspired by the infinite loop structure used by silkworms in making cocoons, open cell structures were designed to investigate mechanical properties. For this purpose, based on Maxwell's formula in the design of rod open cell structures, different samples consisting of straight rods or infinity ring structures with different parameters were made using FDM 3D printing method. After manufacturing the parts, the axial tensile stress test was performed on the samples. The obtained results showed that the cell structures designed based on the rings used in the silkworm cocoon are non-isotropic single layers. Although the infinite cell structures have a lower tensile modulus and strength, the larger elastic strain and the gradual process of failure, and as a result, the conversion of the tensile modulus to bending in this structure, is considered one of their important advantages, which are used in various applications such as building sandwich panels that bear the duty They don't have the burden, they can be noticed.

کلیدواژه‌ها [English]

  • Cellular structure
  • Sandwich panel
  • Iinfinity structure
  • 3D printing
  • Mechanical properties
[1] M. Marino, R. Sabatini, Advanced lightweight aircraft design configurations for green operations, in: PRCC 2014, Engineers Australia, 2014.
[2] Jansto, S. Steel Producers Respond to Demand for High Performance Bridge Steels with Niobium; CBMM North America, Inc.: Pittsburgh, PA, USA, 2020; Available online: www.cbmm.com (accessed on 15 August 2021).
[3] J. C.Najmon, J.DeHart, Z. Wood, A. Tovar, SAE Int, J.Transp,Saf, 6 (3) (2018).
[4] Lutsey, N. Review of Technical Literature and Trends Related to Automobile Mass-Reduction Technology; Research Report UCD-ITS-RR-10-10; Institute of Transportation Studies, University of California: Davis, CA, USA, 2010.
[5] Walton, D.; Moztarzadeh, H. Design and Development of an Additive Manufactured Component by Topology Optimization. Procedia CIRP 2017, 60, 205–210.
[6] M. Ashby, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364 (1838) (2006) 15–30.
[7] Rosen, D.W. Computer-Aided Design for Additive Manufacturing of Cellular Structures. Comput.-Aided Des. Appl. 2007, 4, 585–594.
[8] X. P. Tan, Y.J. Tan, C.S.L. Chow, S.B. Tor, W.Y. Yeong, Mater. Sci. Eng. C 76 (2017) 1328–1343.
[9] X. Xia, Z. Zhang, W. Zhao, C. Li, J. Ding, C. Liu, Y. Liu, Acoustic properties of closed-cell aluminum foams with different macrostructures, J. Mater. Sci. Technol. 33 (2017) 1227.
[10] E. Farre´-Guasch, J. Wolff, M. N. Helder, E. A. Schulten, T. Forouzanfar and J. Klein-Nulend, Application of additive manufacturing in oral and maxillofacial surgery, J. Oral Maxillofac. Surg., 2015, 73(12), 2408–2418.
[11] J. Skibinski, K. Cwieka, T. Kowalkowski, B. Wysocki, T. Wejrzanowski, K.J. Kurzydlowski, The influence of pore size variation on the pressure drop in open-cell foams, Mater. Des. 87 (2015) 650–655.
[12] C. Moon, D. Kim, G.B. Abadi, S.Y. Yoon, K.C. Kim, Effect of ligament hollowness on heat transfer characteristics of open-cell metal foam, Int. J. Heat Mass Transf. 102 (2016) 911–918.
[13] S. Catchpole-Smith, R.R.J. S´elo, A.W. Davis, I.A. Ashcroft, C.J. Tuck, A. Clare, Addit. Manuf. 30 (2019) 100846.
[14] O. Nematollahi, G.B. Abadi, D.Y. Kim, K.C. Kim, Experimental study of the effect of brazed compact metal-foam evaporator in an Organic Rankine Cycle (ORC) performance- toward a compact ORC, Energy Convers. Manage. 173 (2018) 37– 45.
[15] Ivanova O, Williams C, Campbell T. Additive Manufacturing (AM) and nanotechnology: Promises and Challenges. Rapid Prototyping Journal. 2013;19(5):353-64.
[16] Tang YL, Dong GY, Zhou QX, et al. Lattice structure design and optimization with additive manufacturing constraints. IEEE Trans Autom Sci Eng 2018;15(4):1546–62.
[17] A. Nazir, K.M. Abate, A. Kumar, J.Y. Jeng, Int. J. Adv. Manuf. Technol 104 (9–12) (2019) 3489–3510,
[18] L. J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, 1999.
[19] Nazir, A., Abate, K.M., Kumar, A. et al. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int J Adv Manuf Technol 104, 3489–3510 (2019).
[20] Gorguluarslan, R. M., Park, S., Rosen, D. W., and Choi, S. (October 12, 2015). "A Multilevel Upscaling Method for Material Characterization of Additively Manufactured Part Under Uncertainties." J. Mech. Des. November 2015; 137(11): 111408.
[21] Hamza Alsalla, Liang Hao, Christopher Smith, Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique, Materials Science and Engineering: A, Volume 669, 2016, Pages 1-6, ISSN 0921-5093.
[22] Changjun Han, Chunze Yan, Shifeng Wen, Tian Xu, Shuai Li, Jie Liu, Qingsong Wei, Yusheng Shi, Effects of the unit cell topology on the compression properties of porous Co-Cr scaffolds fabricated via selective laser melting, Rapid Prototyping Journal, ISSN: 1355-2546, Article publication date: 16 January 2017.
[23] Geng X, Lu Y, Liu C, Li W, Yue Z. Fracture characteristic analysis of cellular lattice structures under tensile load. International Journal of Solids and Structures. 2019 May 15;163:170-7.
[24] Yang X, Ma W, Gu W, Zhang Z, Wang B, Wang Y, Liu S. Multi-scale microstructure high-strength titanium alloy lattice structure manufactured via selective laser melting. RSC advances. 2021;11(37):22734-43.
[25] Niu J, Choo HL, Sun W. Finite element analysis and experimental study of plastic lattice structures manufactured by selective laser sintering. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2017 Feb;231(1-2):171-8.
[26] Maskery I, Aremu AO, Simonelli M, Tuck C, Wildman RD, Ashcroft IA, Hague RJ. The BCC unit cell for latticed SLM parts; mechanical properties as a function of cell size. In2014 International Solid Freeform Fabrication Symposium 2014. University of Texas at Austin.
[27] Kladovasilakis N, Charalampous P, Tsongas K, Kostavelis I, Tzetzis D, Tzovaras D. Experimental and Computational Investigation of Lattice Sandwich Structures Constructed by Additive Manufacturing Technologies. Journal of Manufacturing and Materials Processing. 2021 Aug 31;5(3):95.
[28] V. S. Deshpande, M.F. Ashby, N.A. Fleck, Acta Mater. 49 (6) (2001) 1035–1040.
[29] N. A. Fleck, V.S. Deshpande, M.F. Ashby, Proc. R. Soc. A Math. Phys. Eng. Sci. 466 (2121) (2010) 2495–2516, 2010.0215.
[30] M. Ashby, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364 (1838) (2006) 15–30, 2005.1678.
[31] L. Gibson, M. Ashby, B. Harley, Cellular Materials in Nature and Medicine, 2010.
[32] M. Hosseini Vajari, S. Dariushi, M. Behzadnasab, An experimental investigation on mechanical properties of 3D-printed bioinspired sandwich panels based on silk cocoon geometry.
[33] M. Benedetti, A. du Plessis, R.O. Ritchie, M. Dallago, S.M.J. Razavi, F. Berto, Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication, Materials Science and Engineering: R: Reports, Volume 144, 2021.
[34] S. Boria, Lightweight Design and Crash Analysis of Composites. J.Njuguna (Eds.), Lightweight Composite Structures in Transport, pp. 329-360, New York:Woodhead Publishing, 2016.
[35] Zaki Alomar, Franco Concli, Compressive behavior assessment of a newly developed circular cell-based lattice structure, Materials & Design, Volume 205, 2021.
[36] Yige Liu, Hao Hua, Biao Li, Exploration and design of knitted composites for architectural application: The MeiTing project, Frontiers of Architectural Research, 2022.
[37] Kononova, O., Krasņikovs, A., Harjkova, G., Zaļeskis, J., & Mačanovskis, Characterization of Mechanical Properties by Inverse Technique for Composite Reinforced by Knitted Fabric. Part 1. Material Modeling and Direct Experimental Evaluation of Mechanical Properties, E. (2012).
[38] Yuan L, Fan W, Miao Y, et al. Enhanced mechanical and electromagnetic properties of polymer composite with 2.5D novel carbon/quartz fiber core-spun yarn woven fabric. Journal of Industrial Textiles. 2021;51(1):134-151.
[39] M. Sugavaneswaran, G. Arumaikkannu, Analytical and experimental investigation on elastic modulus of reinforced additive manufactured structure, Materials & Design (1980-2015), Volume 66, Part A, 2015, Pages 29-36.
[40] Gabr MH, Phong NT, Okubo K, Uzawa K, Kimpara I, Fujii T. Thermal and mechanical properties of electrospun nano-celullose reinforced epoxy nanocomposites. Polym Testing 2014;37:51–8.
[41] G. Bergmann, et al., Biomed. Mater. Eng. 20 (2) (2010) 65–75.
[42] Pervin F, Zhou Y, Rangari VK, Jeelani S. Testing and evaluation on the thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Mater Sci Eng, A 2005;405:246–53.
[43] Raei M, Reza Toroghinejad M, Jamaati R. Nano/ultrafine structured AA1100 by ARB process. Mater Manuf Processes 2011;26:1352–6.