تحلیل تجربی و بهینه‌سازی نیروی محوری در فرایند سوراخ‌کاری ارتوپدی با استفاده از ابزار پوشش‌دهی شده با نانو پوشش نیترید تیتانیوم به روش رسوب دهی فیزیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه ساخت و تولید، دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه بوعلی سینا همدان، همدان، ایران

3 دانشجوی کارشناسی ارشد، گروه ساخت و تولید، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

4 کارشناسی ارشد، گروه مهندسی ساخت و تولید، دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران

چکیده

یکی از حساس‌ترین و پرکاربردترین فرآیندهای ماشین‌کاری در جراحی­‌ها و مهندسی پزشکی، فرآیند سوراخ‌کاری استخوان می‌­باشد. در این فرآیند سعی برآن است تا نیروی محوری وارد بر بافت استخوان حین عمل جراحی کمینه شود. برای کاهش نیرو روش‌­های مختلفی از جمله استفاده از انجتم فرآیند در حالت سرعت بالا، خنک کاری با گاز، نوسانات فراصوتی، تغییر جنس و هندسه ابزار و همچنین استفاده از ابزارهای پوشش‌­دار مورد توجه قرار گرفته است. هدف از این مقاله بررسی اثر یک نوع نانو پوشش بر روی ابزار از جنس تیتانیوم نیتراید و بررسی اثر پارامترهای ورودی موثر بر روی رفتار نیرو در سوراخ‌کاری ارتوپدی با در نظر داشتن الزامات پزشکی می­‌باشد. در این پژوهش ماده پلیمری پلی­‌متیل‌­متاکریلات که خواصی نزدیک به استخوان دارد انتخاب و با ایجاد نانو پوشش از جنس تیتانیم نیترید بر روی ابزار، اثر سرعت دورانی ابزار، نرخ پیشروی و قطر ابزار بر روی نیروی فرایند سوراخ‌کاری با استفاده از طراحی آزمایش به روش سطح پاسخ، مدل‌سازی و معادله رگرسیون خطی مرتبه دوم حاکم بر مدل استخراج شده­ است. همچنین مقادیر بهینه هریک از پارامترهای ورودی به منظور دستیابی به بهترین و کمینه‌­ترین مقدار نیروی ایجاد شده در حین سوراخ‌کاری ارتوپدی ارائه شده است. نتایج نشان داده  است که ایجاد نانوپوشش تیتانیم نیترید باعث کاهش نیرو به مقدار 40 درصد شده است. همچنین نیروی محوری با بیشترین مقدار سرعت برشی و کمترین مقدار سرعت پیشروی و در ابزارهای با قطر کمتر، کاهش قابل ملاحظه‌­ای داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Analysis and Optimization of Thrust Force in the Orthopedic Drilling Process Using the Tool Coated with Titanium Nitride Nano Coating by the Physical Vapor Deposition Method

نویسندگان [English]

  • Vahid Tahmasbi 1
  • Abbas Pak 2
  • Ali Zeinolabedin Beygi 3
  • Peyman HassanPour 4
1 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
2 Department of Mechanical Engineering, Bu-Ali Sina University, Hamedan, Iran
3 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
4 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
چکیده [English]

One of the most significant and applicable machining processes in surgeries and medical engineering is the bone drilling process. In this process, it is intended to minimize the axial force on the bone tissue during surgery. To reduce force, different methods have been considered; including the use of a variety of lubricants, ultrasonic oscillations, material replacement, tool geometry, and also the use of coated tools. The purpose of this paper is to investigate the effect of a specific type of nano coating on steel tool, and to investigate the effect of effective input parameters on force behavior in orthopedic drilling with medical requirements in mind. In this study, the polymeric material of poly-methyl-meta-carylate (PMMA), which has similar properties to the bone, was selected; and by creating titanium nitride nano coating on the tool, the effect of tool rotational speed, feed rate, and the tool diameter on the drilling process force have been extracted using the design of experiment by the response surface method, modeling and second-order linear regression equation governing the model. The optimum values of each input parameter are also presented in order to achieve the minimum and the best amount of force created during orthopedic drilling. The results show that the creation of titanium nitride nano coating reduces the force by 40 percent. Also, the axial force with the maximum cutting speed, the minimum feed rate, and in the tools with smaller diameters has been significantly reduced.

کلیدواژه‌ها [English]

  • Machining
  • Poly-methyl-meta-carylate drilling
  • Force
  • Response surface method
  • Medical nano coating
[1] K. Alam, Experimental and numerical investigation of cracking behavior of cortical bone in cutting, Technology and Health Care, Vol. 22, No. 5, pp. 741-750, 2014.
[2] V. Tahmasbi, M. Ghoreishi, and M. Zolfaghari, Modeling and multi objective optimization of effective parameters in drilling cortical bone, Modares Mechanical Engineering, Vol. 15, No. 13, pp. 113-119, 2015. (in Persian)
[3] T. L. Ginta and B. Ari-Wahjoedi, Cutting Force and Temperature Variation in Bone Drilling-A Review, in Advanced Materials Research, 2014, Vol. 845: Trans Tech Publ, pp. 934-938.
[4] J. Lee, C. L. Chavez, and J. Park, Parameters affecting mechanical and thermal responses in bone drilling: A review, Journal of Biomechanics, Vol. 71, pp. 4-21, 2018.
[5] R. Zitoune, V. Krishnaraj, B. S. Almabouacif, F. Collombet, M. Sima, and A. Jolin, Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/Aluminium sandwich, Composites Part B: Engineering, Vol. 43, No. 3, pp. 1480-1488, 2012.
[6] A. Thakur and S. Gangopadhyay, Dry machining of nickel-based super alloy as a sustainable alternative using TiN/TiAlN coated tool, Journal of cleaner production, Vol. 129, pp. 256-268, 2016.
[7] B. Azarhoushang and J. Akbari, Ultrasonic-assisted drilling of Inconel 738-LC, International Journal of Machine Tools and Manufacture, Vol. 47, No. 7-8, pp. 1027-1033, 2007.
[8]E. Shakouri, M. H. Sadeghi, M. Maerefat, M. R. Karafi, and M. Memarpour, Experimental and analytical investigation of thrust force in ultrasonic assisted drilling of bone, Modares Mechanical Engineering, Vol. 14, No. 6, pp. 194-200, 2014. (in Persian)
[9] A. P. Ilyuschenko, E. E. Feldshtein, Y. O. Lisovskaya, L. V. Markova, M. A. Andreyev, and A. Lewandowski, On the properties of PVD coating based on nanodiamond and molybdenum disulfide nanolayers and its efficiency when drilling of aluminum alloy, Surface and Coatings Technology, Vol. 270, pp. 190-196, 2015.
[10] C. Jacob, J. Berry, M. Pope, and F. Hoaglund, A study of the bone machining process—drilling, Journal of Biomechanics, Vol. 9, No. 5, pp. 343-349, 1976.
[11] K. Alam, M. Ghodsi, A. Al-Shabibi, and V. Silberschmidt, Experimental study on the effect of point angle on force and temperature in ultrasonically assisted bone drilling, Journal of Medical and Biological Engineering, Vol. 38, No. 2, pp. 236-243, 2018.
[12] M. Basiaga, Z. Paszenda, J. Szewczenko, and M. Kaczmarek, Numerical and experimental analyses of drills used in osteosynthesis, Acta of Bioengineering and Biomechanics, Vol. 13, No. 4, pp. 29-36, 2011.
[13] J. Lee, O. B. Ozdoganlar, and Y. Rabin, An experimental investigation on thermal exposure during bone drilling, Medical Engineering & Physics, Vol. 34, No. 10, pp. 1510-1520, 2012.
[14] R. K. Pandey and S. S. Panda, Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach, Journal of Intelligent Manufacturing, Vol. 26, No. 6, pp. 1121-1129, 2015.
[15] T. Udiljak, D. Ciglar, and S. Skoric, Investigation into bone drilling and thermal bone necrosis, Advances in Production Engineering & Management, Vol. 2, No. 3, pp. 103-112, 2007.
[16] M. Zolfaghari, Temperature in bone drilling process: Mathematical modeling and Optimization of effective parameters, International Journal of Engineering, Vol. 29, No. 7, pp. 946-953, 2016.
[17] R. K. Pandey and S. S. Panda, Modelling and optimization of temperature in orthopaedic drilling: An in vitro study, Acta of Bioengineering and Biomechanics, Vol. 16, No. 1, 2014.
[18] G. Singh, V. Jain, and D. Gupta, Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 229, No. 3, pp. 225-231, 2015.
[19] V. Tahmasbi, A. Zeinolabedin Beygi, and H. Moslemi Naeini, Experimental study and sobol sensitivity analysis in optimizing the effective parameters of dry turning process of aluminum alloy 6061-T6, Iranian Journal of Manufacturing Engineering, Vol. 8, No. 8, pp. 12-23, 2021. (in Persian)
[20] M. Salamat-Talab, V. Tahmasbi, M. Safari, and A. Zeinolabedin Beygi, Mathematical modeling, sobol sensitivity analysis and optimization of main parameters in drilling of E-glass/epoxy laminated composites, Iranian Journal of Manufacturing Engineering; Vol. 8, No. 11, pp. 43-53, 2022. (in Persian)
[21] D. C. Montgomery, Design and analysis of experiments. John wiley & sons, 2017.
[22] P. F. Heini, T. Franz, C. Fankhauser, B. Gasser, and R. Ganz, Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones, Clinical biomechanics, Vol. 19, No. 5, pp. 506-512, 2004.
[23] R. Kuppuswamy and B. Christie-Taylor, Influence of surgical drill geometry on drilling performance of cortical and trabecular bone, in Advances in Forming, Machining and Automation: Springer, 2019, pp. 119-131.
[24] H. Hatten Jr and M. Voor, Bone healing using a bi-phasic ceramic bone substitute demonstrated in human vertebroplasty and with histology in a rabbit cancellous bone defect model, Interventional Neuroradiology, Vol. 18, No. 1, pp. 105-113, 2012.
[25] L. Giorleo, Poly (methyl methacrylate) Coating of Titanium Workpieces to Reduce Burrs in Micro-drilling, Micromachines, Vol. 10, No. 12, p. 838, 2019.
[26] R. kumar Pandey and S. Panda, Predicting temperature in orthopaedic drilling using back propagation neural network, Procedia Engineering, Vol. 51, pp. 676-682, 2013.
[27] J. Charnley, Anchorage of the femoral head prosthesis to the shaft of the femur, The Journal of bone and joint surgery. British volume, Vol. 42, No. 1, pp. 28-30, 1960.
[28] V. Kalidindi, Optimization of drill design and coolant systems during dental implant surgery, 2004.
[29] W. Cui, G. Qin, J. Duan, and H. Wang, A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility, Materials Science and Engineering: C, Vol. 71, pp. 520-528, 2017.
[30] W. Y. Liew, J. L. L. Jie, L. Y. Yan, J. Dayou, C. Sipaut, and M. F. B. Madlan, Frictional and wear behaviour of AlCrN, TiN, TiAlN single-layer coatings, and TiAlN/AlCrN, AlN/TiN nano-multilayer coatings in dry sliding, Procedia Engineering, Vol. 68, pp. 512-517, 2013.
[31] V. Astakhov and M. Osman, Correlations amongst process parameters in metal cutting and their use for establishing the optimum cutting speed, Journal of materials processing technology, Vol. 62, No. 1-3, pp. 175-179, 1996.
[32] R. Suresh, S. Basavarajappa, V. Gaitonde, and G. Samuel, Machinability investigations on hardened AISI 4340 steel using coated carbide insert, International Journal of Refractory Metals and Hard Materials, Vol. 33, pp. 75-86, 2012.
[33] E.-G. Ng, D. Aspinwall, D. Brazil, and J. Monaghan, Modelling of temperature and forces when orthogonally machining hardened steel, International Journal of Machine Tools and Manufacture, Vol. 39, No. 6, pp. 885-903, 1999.
[34] W. A. Knight and G. Boothroyd, Fundamentals of metal machining and machine tools. CRC Press, 2005.
[35] Y. Altintas and A. Ber, Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design, Applied Mechanics Reviews, Vol. 54, No. 5, pp. B84-B84, 2001.
[36] M. R. Shabgard, M. Jafarian Zanjaban, and R. Azarafza, Experimental study on the influence of CuO nanofluid on surface roughness and machining force in turning of AISI 4340 steel, Modares Mechanical Engineering, Vol. 14, No. 2, pp. 27-33, 2014. (in Persian)
[37] G. Augustin, S. Davila, K. Mihoci, T. Udiljak, D. S. Vedrina, and A. Antabak, Thermal osteonecrosis and bone drilling parameters revisited, Archives of Orthopaedic and Trauma Surgery, Vol. 128, No. 1, pp. 71-77, 2008.