اثر مقدار عامل فوم‌ساز کربنات کلسیم بر ساختار فیزیکی و خواص مکانیکی فوم آلومینیومی LM13

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران

2 دانشیار، مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران

3 استادیار، مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران

چکیده

هدف این پژوهش بررسی اثر تغییرات مقدار عامل فوم­‌ساز کربنات کلسیم بر خواص فیزیکی و مکانیکی فوم آلومینیومی LM13 می‌باشد. فوم از جنس آلیاژ آلومینیوم LM13 با استفاده از عامل فوم­‌ساز کربنات کلسیم (CaCO3) و ذرات تثبیت کننده فلز کلسیم (Ca) با چگالی‌های از 3/0 تا 5/ 0 gr⁄cm3  (چگالی نسبی 12/0 تا 18/0) و اندازه حفره 25/0 تا 92/0 میلی‌متر تولید شده است. تأثیر میزان عامل فوم­‌ساز بر اندازه حفره­‌ها، کمترین ضخامت دیواره­‌ها و چگالی مورد ارزیابی قرار گرفته است. در ادامه رفتار مکانیکی فوم‌ها با استفاده از آزمون فشار تک محوری مورد بررسی قرار گرفته و تغییرات استحکام فشاری، ویژگی­‌های الاستیک و ظرفیت جذب انرژی فوم‌ها در اثر تغییرات مقدار عامل فوم‌ساز بررسی شده است. مطابق نتایج بدست آمده استفاده بیشتر از عامل فوم‌ساز منجر به تولید فوم‌هایی با اندازه میانگین حفره بزرگتر و چگالی کمتر می‌گردد. همچنین افزایش مقدار عامل فوم‌ساز سبب کاهش مقاومت فشاری فوم‌ها در آزمون فشار تک‌محوری و ظرفیت جذب انرژی آن‌ها می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

The influence of the amount of CaCO3 foaming agent on the physical structure and mechanical properties of LM13 aluminum foam

نویسندگان [English]

  • Sadegh Soltani 1
  • Hamed Deilami Azodi 2
  • Seyed Hossein Elahi 3
1 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
2 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
3 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
چکیده [English]

This paper aims to investigate the effect of the amount of calcium carbonate as foaming agent on the physical and mechanical properties of LM13 aluminum foam. Aluminum alloy LM13 foams have been made using calcium carbonate (CaCO3) as foaming agent and calcium metal (Ca) as stabilizing particles with densities from 0.3 to 0.5 gr/cm3 (relative density from 0.12 to 0.18) and the pores size from 0.25 to 0.92 mm. The effects of the amount of foaming agent on the size of the pores, the minimum thickness of the walls and the density have been evaluated. Furthermore, the mechanical behavior of foams has been investigated using uniaxial compression test. The influences of the amount of foaming agent on compressive strength, elastic characteristics and energy absorption capacity of foams have been investigated. According to the obtained results, the use of more foaming agent leads to the production of foams with larger average pores size and less density. Also, increasing the amount of foaming agent reduces the compressive strength of foams in the uniaxial compression test and their energy absorption capacity.

کلیدواژه‌ها [English]

  • Aluminum Foam
  • Foaming Agent
  • Compressive Strength
  • Energy Absorption capacity
[1] L J Gibson, M F Ashby. Cellular Solids: Structure and Properties, Cambridge University Press, UK, Cambridge, 1997.
[2] Raj, R. E. and B. Daniel. "Structural and compressive property correlation of closed-cell aluminum foam." Journal of Alloys and Compounds (2009)467(1-2): 550-556.
[3] Banhart, J. and H. W. Seeliger. "Aluminium foam sandwich panels: manufacture, metallurgy and applications." Advanced Engineering Materials (2008) 10(9): 793-802.
[4] Linul, E., et al. "The temperature and anisotropy effect on compressive behavior of cylindrical closed-cell aluminum-alloy foams." Journal of Alloys and Compounds (2018) 740: 1172-1179.
[5] Wang, Z., et al. "Compressive behavior of closed-cell aluminum alloy foams at medium strain rates." Materials Science and Engineering: A (2011) 528(6): 2326-2330.
[6] Heidari Ghaleh, M., et al. "Compressive properties of A356 closed-cell aluminum foamed with a CaCO3 foaming agent without stabilizer particles." Metals and Materials International (2021) 27(10): 3856-3861.
[7] Praveen Kumar, T., et al. "Effect of Grain Size of Calcium Carbonate Foaming Agent on Physical Properties of Eutectic Al–Si Alloy Closed Cell Foam." Transactions of the Indian Institute of Metals (2015) 68(1): 109-112.
[8] Raj, R. E. and B. Daniel. "Structural and compressive property correlation of closed-cell aluminum foam." Journal of Alloys and Compounds (2009)467(1-2): 550-556.
[9] Karuppasamy, R., et al. "Investigation on the effect of aluminium foam made of A413 aluminium alloy through stir casting and infiltration techniques." International Journal of Materials Engineering Innovation (2020) 11(1): 34-50.
[10] Sutarno, et al. Optimization of calcium carbonate content on synthesis of aluminum foam and its compressive strength characteristic. AIP Conference Proceedings, AIP Publishing LLC (2017).
[11] Linul, E., et al. "Dynamic and quasi-static compression tests of closed-cell aluminium alloy foams." Proc. Roman. Acad. (2017) A 18(4): 361-369.
[12] H. P. Degischer, B. Kriszt, “Handbook of cellular metals”,Weinheim, Wiley, VCH, 2002
[13] BOMMANA, Divakar, et al. Effect of Blowing Agent CaCO3 Content on the Microstructure and Mechanical Properties of AA 5083 Foam. International Journal of Metalcasting, 2021, 1-17
[14] P. J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, S. Li, Dynamic compressive strength properties of aluminum foams, part I—experimental data and observations. J. Mech. Phys. Solids 53, 2174–2205 (2005)
[15] Y. Sun, Q.M. Li, T. Lowe, S.A. McDonald, P.J. Withers, Investigation of strain-rate effect on the compressivebehaviour of closedcell aluminium foam by 3D image-based modelling. Mater. Des. 89, 215–224 (2016)
[16] I. Jeon, T. Asahina, The effect of structural defects on the compressive behavior of closed-cell Al foam. Acta Mater. 53, 3415–3423 (2005)
[17] O. B. Olurin, N.A. Fleck, M.F. Ashby, Deformation and fracture of aluminum foams. Mater. Sci. Eng. A 291, 136–146 (2000)
[18] Pinto, P., N. Peixinho, F. Silva, and D. Soares. "Compressive properties and energy absorption of aluminum foams with modified cellular geometry." Journal of Materials Processing Technology 214, No. 3 (2014): 571-577.
[19] Byakova, Alexandra, Yuri Bezim’yanny, Svyatoslav Gnyloskurenko, and Takashi Nakamura. "Fabrication method for closed-cell aluminium foam with improved sound absorption ability." Procedia Materials Science4 (2014): 9-14.
[20] Q. Fang, J. Zhang, Y. Zhang, J. Liu, Z. Gong, Mesoscopic investigationof closed-cell aluminum foams on energy absorption capabilityunder impact. Compos. Struct. 124, 409–420 (2015)
[21] Wichianrat, Ekkapak, Yuttanant Boonyongmaneerat, and Seksak Asavavisithchai. "Microstructural examination and mechanical properties of replicated aluminium composite foams." Transactions of Nonferrous Metals Society of China22, No. 7 (2012): 1674-1679.
[22] R. Huang, S. Ma, M. Zhang, J. Xu, Z. Wang, Dynamic deformation and failure process of quasi-closed-cell aluminum foam manufactured by direct foaming technique. Mater. Sci. Eng. A (2019).
[23] Cao, Xiao-qing, Zhi-hua Wang, Long-mao ZHAO, and Gui-tong YANG. "Effects of cell size on compressive properties of aluminum foam." Transactions of Nonferrous Metals Society of China16, No. 2 (2006): 351-356.
[24] S.F. Fischer, P. Schuler, C. Fleck, A. Buhrig-Polaczek, Influence of the casting and mould temperatures on the (micro)structure and compression behaviour of investment-cast open-pore aluminium foams. Acta Mater. 61, 5152–5161 (2013).