اندازه‌گیری غیرمخرب تنش پسماند در قطعات فولادی جوشکاری شده با روش برهمنگاری تصاویر دیجیتالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

چکیده

در این تحقیق به بررسی و اندازه‌­گیری تنش پسماند در اتصال قطعات فولادی جوشکاری شده با روش غیرمخرب برهمنگاری تصاویر دیجیتالی پرداخته شده است. به این منظور نمونه‌­هایی از جنس ورق A36 تهیه و عملیات جوشکاری قوسی با گاز محافظ بر روی آن­ها انجام شد. برای اندازه­‌گیری غیرمخرب تنش پسماند از روش برهمنگاری تصاویر دیجیتالی استفاده شده است و نمونه­‌های پایه، جوشکاری شده بدون عملیات حرارتی و جوشکاری شده با عملیات حرارتی مورد ارزیابی قرار گرفته­‌اند. عملیات حرارتی نمونه­‌ها از نوع آنیلینگ می‌باشد که این عملیات به منظور کاهش تنش پسماند نمونه­‌های جوش داده شده انجام شده است. به منظور اندازه‌گیری تنش پسماند به صورت غیرمخرب رابطه جدیدی معرفی شده است که بر پایه قانون هوک است. مقادیر تنش پسماند با اندازه‌­گیری میزان کرنش نمونه­‌ها و قرار دادن مقادیر آن در این رابطه محاسبه شده است. نتایج نشان می‌دهند که عملیات حرارتی صورت گرفته بر روی نمونه­‌ها سبب کاهش مقادیر تنش پسماند به میزان تقریبی 33% شده است و روش برهمنگاری تصاویر دیجیتالی دقت کافی و مناسب برای اندازه­‌گیری تنش پسماند به صورت غیرمخرب را در نمونه‌های ذکر شده دارا می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Nondestructive measurement of residual stress in welded steel parts using digital image correlation method

نویسندگان [English]

  • Peyman Ghasemi Tamami 1
  • Davood Akbari 2
1 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

In this paper, nondestructive measurement of residual stress in welded steel parts joint using digital image correlation method has been investigated. For this purpose, samples of A36 sheet were prepared and arc welding with shielding gas (GMAW) was performed on them. In order to measure nondestructive residual stress in all parts, digital image correlation method has been used. Base and welded samples with and without heat treatment have been evaluated with this method. The heat treatment of the samples is of the tempering type, which is performed in order to reduce the residual stress of the welded samples. In order to measure non-destructive residual stress, a new relationship has been introduced which is based on Hooke's law. Residual stress values are calculated by measuring the displacement and strain of the samples and placing their values in the given new relation. Examining the results, it has been found that the heat treatment performed on the samples has reduced the residual stress values by approximately 33% and the digital image correlation method has sufficient and appropriate accuracy for measuring nondestructive residual stresses.

کلیدواژه‌ها [English]

  • Gas metal arc welding
  • A36 sheet
  • Residual stress
  • Digital image correlation
[1] Shokrieh, M. M. (Ed.). Residual stresses in composite materials. Woodhead publishing, 2014.
[2] Peng, Y., Zhao, J., Chen, L. S., & Dong, J. Residual stress measurement combining blind-hole drilling and digital image correlation approach. Journal of Constructional Steel Research176, 106346, 2021.
[3] Orozco-Caballero, A., Jackson, T., & Da Fonseca, J. Q. High-resolution digital image correlation study of the strain localization during loading of a shot-peened RR1000 nickel-based superalloy. Acta Materialia, 220, 117306, 2021.
[4] Tho, P. D., Tien, T. M., Thanh, D. T., Ngan, V. M., & Ngoc, V. M. Experimental investigation of the secondary creep of fiber reinforced concrete at high stress: Macroscopic measurement and digital image correlation. Journal of Science and Technology in Civil Engineering (STCE)-HUCE, 16(1), 19-28, 2022.
[5] Huang, X., Liu, Z., & Xie, H. Recent progress in residual stress measurement techniques. Acta Mechanica Solida Sinica26(6), 570-583, 2013.
[6] Peters, W. H., Ranson, W. F., Sutton, M. A., Chu, T. C., & Anderson, J. Application of digital correlation methods to rigid body mechanics. Optical Engineering, 22(6), 226738, 1983.
[7] Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. Determination of displacements using an improved digital correlation method. Image and vision computing, 1(3), 133-139, 1983.
[8] Sutton, M. A., Mingqi, C., Peters, W. H., Chao, Y. J., & McNeill, S. R. Application of an optimized digital correlation method to planar deformation analysis. Image and Vision Computing4(3), 143-150, 1986.
[9] Vendroux, G. Correlation: A digital image correlation program for displacement and displacement gradient measurements. GALCIT Report No. SM90-19, California Institute of Technology,
[10] Vendroux, G., & Knauss, W. G. Submicron deformation field measurements: Part 2. Improved digital image correlation. Experimental Mechanics, 38(2), 86-92, 1998.
[11] Wang, Y., & Cuitiño, A. M. Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation. International Journal of Solids and Structures, 39(13-14), 3777-3796, 2002.
[12] Quinta da Fonseca, J., Mummery, P. M., & Withers, P. J. Full‐field strain mapping by optical correlation of micrographs acquired during deformation. Journal of microscopy, 218(1), 9-21, 2005.
[13] Jin, H., & Bruck, H. A. Pointwise digital image correlation using genetic algorithms. Experimental Techniques, 29(1), 36-39, 2005.
[14] Réthoré, J., Hild, F., & Roux, S. Shear-band capturing using a multiscale extended digital image correlation technique. Computer Methods in Applied Mechanics and Engineering, 196(49-52), 5016-5030, 2007.
[15] Réthoré, J., Hild, F., & Roux, S. Extended digital image correlation with crack shape optimization. International journal for numerical methods in engineering, 73(2), 248-272, 2008.
[16] Sutton, M. A., Yan, J. H., Tiwari, V., Schreier, H. W., & Orteu, J. J. The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Optics and Lasers in Engineering, 46(10), 746-757, 2008.
[17] Barranger, Y., Doumalin, P., Dupré, J. C., & Germaneau, A. Strain measurement by digital image correlation: influence of two types of speckle patterns made from rigid or deformable marks. Strain, 48(5), 357-365, 2012.
[18] Schajer, G. S. Advances in hole-drilling residual stress measurements. Experimental mechanics, 50(2), 159-168, 2010.
[19] Korsunsky, A. M., Sebastiani, M., & Bemporad, E. Residual stress evaluation at the micrometer scale: Analysis of thin coatings by FIB milling and digital image correlation. Surface and Coatings Technology, 205(7), 2393-2403, 2010.
[20] Krottenthaler, M., Schmid, C., Schaufler, J., Durst, K., & Göken, M. A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation. Surface and Coatings Technology, 215, 247-252, 2013.
[21] Yaowu, X. U., & Rui, B. A. O. Residual stress determination in friction stir butt welded joints using a digital image correlation-aided slitting technique. Chinese Journal of Aeronautics, 30(3), 1258-1269, 2017.
[22] Sebastiani, M., Eberl, C., Bemporad, E., & Pharr, G. M. Depth-resolved residual stress analysis of thin coatings by a new FIB–DIC method. Materials Science and Engineering: A, 528(27), 7901-7908, 2011.
[23] Sebastiani, M., Eberl, C., Bemporad, E., Korsunsky, A. M., Nix, W. D., & Carassiti, F. Focused ion beam four-slot milling for Poisson's ratio and residual stress evaluation at the micron scale. Surface and Coatings Technology, 251, 151-161, 2014.
[24] Daynes, N., Horne, G., Heard, P. J., Hodgson, D. Z. L., & Shterenlikht, A. Microscale residual stress measurement in steel using focused ion beam slotting and digital image correlation. In Proceedings of the 2008 International Conference on Residual Stresses (Vol. 23), 2008.
[25] Winiarski, B., & Withers, P. J. Micron-scale residual stress measurement by micro-hole drilling and digital image correlation. Experimental mechanics, 52(4), 417-428, 2012.
[26] Nelson, D. V., Makino, A., & Schmidt, T. Residual stress determination using hole drilling and 3D image correlation. Experimental Mechanics, 46(1), 31-38, 2006.
[27] Kim, K., Choi, T., gyun Na, M., & Jung, H. Residual stress measurement on the butt-welded area by electronic speckle pattern interferometry. Nuclear Engineering and Technology, 47(1), 115-125, 2015.
[28] Kim, K., & Jung, H. Nondestructive testing of residual stress on the welded part of butt-welded A36 plates using electronic speckle pattern interferometry. Nuclear Engineering and Technology, 48(1), 259-267, 2016