بررسی تحلیلی تاثیر سرعت دورانی و نرخ پیشروی بر افزایش دما در سوراخکاری استخوان فک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران

2 دانشجوی دکتری، دانشگاه تربیت دبیر شهید رجایی، تهران

3 دانشیار، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران

4 استادیار، مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد تهران شمال

چکیده

در حین سوراخ کردن استخوان فک، دما افزایش می­یابد و باعث آسیب حرارتی استخوان شود. بنابراین، بررسی افزایش دما حین سوراخ‌کاری استخوان ضروری به نظر می­رسد. با توجه به دشوار بودن بررسی تجربی افزایش دما در سوراخکاری فک، پیش‌بینی حرارت منتقل شده به استخوان در جراحی، سبب انتخاب صحیح فاکتورهای مؤثر بر دما می­شود. لذا در این تحقیق برای اولین بار با استفاده از روش تفاضل محدود و ضرایب واینر، دمای استخوان فک در حین فرایند سوراخکاری، پیش‌بینی و تأثیر سه فاکتور ورودی نرخ پیشروی، سرعت دوران و زاویه­ی نوک ابزار بررسی شد. تغییرات سرعت دوران ابزار در بازه­ی 200، 400، 800، 1200 و 2500 دوربردقیقه، نرخ پیشروی 50، 60، 90 و 120 میلی‌متر بر دقیقه و زاویه­ی نوک ابزار 70 تا 118 درجه در نظر گرفته شد. بر اساس نتایج به‌دست‌آمده، با افزایش سرعت دوران ابزار و کاهش نرخ پیشروی، دما افزایش می­یابد. همچنین با افزایش زاویه­ نوک از 70 به 118 درجه، دما 10 درجه سانتی­گراد افزایش می­یابد. درنهایت، استفاده از نرخ پیشروی mm/min 120 و mm/min 90 به همراه  سرعت دورانی از 200 تا rpm 2500 و مته با زوایای نوک 70 و 90 درجه پیشنهاد می­شود. استفاده از ماده خنک­کننده، دمای سوراخکاری را تا ˚C9 کاهش می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Analytical investigation of influence of rotational speed and feed rate on temperature elevation in jawbone drilling

نویسندگان [English]

  • Mohammad Meghdad Fallah 1
  • Masoud Mohamadi 2
  • Mohammadmorad Sheikhi 3
  • Ehsan Shakouri 4
  • Valiollah panahizadeh 1
1 Department of Mechanical Engineering, Shahid Rajaee University, Tehran, Iran
2 Department of Mechanical Engineering, Shahid Rajaee University, Tehran, Iran
3 Department of Mechanical Engineering, Shahid Rajaee University, Tehran, Iran
4 Department of Mechanical Engineering, Islamic Azad University, North Tehran Branch, Tehran, Iran
چکیده [English]

During the drilling of the jawbone, the temperature could increase and cause thermal injury in the bone. So, it appears necessary to investigate the temperature rise during bone drilling. Due to the difficulty of experimental study of temperature increase during the jawbone drilling, predicting the heat transferred to the bone during surgery, leads to the correct selection of factors affecting the temperature. Therefore, in this paper, for the first time, using the finite difference method and Wiener coefficients, the temperature of the jawbone during drilling was predicted and the influence of different drilling parameters on the temperature rise was evaluated. Spindle speed were 200, 400, 800, 1200 and 2500 rpm, feed rate 50, 60, 90 and 120 mm/min and drill point angle 70, 90 and 118 degrees. Results showed that an increase in spindle speed and decrease in feed rate caused an increase in bone temperature. Also, with an increase in drill point angle from 70 to 118 degrees, the temperature increases by 10 degrees Celsius. Finally, the following combination of parameter values is suggested: feed rate of 90 to 120mm/min, spindle speeds of 200 to 2500rpm and point angle of 70˚ and 90˚. With irrigation, the decrease in temperature was almost equal to 9˚C.

کلیدواژه‌ها [English]

  • Jawbone Drilling
  • Thermal necrosis
  • Finite difference
[1] F. Karaca, B. Aksakal, Effects of various drilling parameters on bone during implantology: An in vitro experimental study, Acta of bioengineering and biomechanics, Vol. 15, No. 4, pp. 25-32, 2013.
[2] A. P. Neisiani, N. Jamshidi, M.S. Bid abad, N. Soltani, Effect of drill bit angle on temperature rise during mandible drilling with finite element method. Journal of Isfahan Dental School, Vol. 11, No. 4, pp. 284-293, 2015 (in Persian).
[3] E. Shakouri, M. Maerefat, Theoretical and Experimental Investigation of Heat Generation in Bone Drilling: Determination of the Share of Heat Input to the Bone Using Machining Theory and Inverse Conduction Heat Transfer, Modares Mechanical Engineering, Vol. 17, No. 7, pp. 131-140, 2017 (in Persian)
[4] Y. C. Chen, Y.K. Tu, J.Y. Zhuang, Y.J. Tsai, C.Y. Yen, C.K. Hsiao, Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model, Medical & Biological Engineering & Computing, Vol. 55, No. 11, pp. 1949-1957, 2017.
[5] M. Aghvami, J.B. Brunski, U. Serdar Tulu, C.H. Chen, J.A. Helms, A thermal and biological analysis of bone drilling, Journal of biomechanical engineering, Vol. 140, No. 10, 2018.
[6] M. F. Ali Akhbar, A.R. Yusoff, Drilling of bone: Effect of drill bit geometries on thermal osteonecrosis risk regions, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 233, No. 2, pp. 207-218, 2019.
[7] F. Amewoui, G. Le Coz, A.S. Bonnet, A. Moufki, Bone drilling: a thermal model for bone temperature prediction, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 22, No. 1, pp. S305-S307, 2019.
[8] M. Sarparast, M.Ghoreishi, T. Jahangirpoor, V. Tahmasbi, Experimental and finite element investigation of high‑speed bone drilling: evaluation of force and temperature, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 42, No. 349, p. 349, 2020.
[9] Y. Hu, Z. Yan, X. Li, C. Zhang, Q. Zheng, Prediction model of bone drilling temperature based on heat source method in surgical rehabilitation, Procedia CIRP, Vol. 89, pp. 263-269, 2020.
[10] M. Mohamadi, M.M. Sheikhi, M. Meghdad Fallah, E. Shakuri, Analytical and experimental investigation of influence of rotational speed and feed on temperature elevation in cortical bone drilling, Iranian Journal of Manufacturing Engineering, Vol. 7, No. 3, pp. 22-33, 2020 (in Persian)
[11] N. Abbasi, M. Razfar, M. Khajehzadeh, Experimental Investigation and Finite Difference Modeling of Cutting Tool Temperature Distribution During Ultrasonically Assisted Turning, Amirkabir J. Mech. Eng, Vol. 50, No. 3, pp. 657-670, 2018.
[12] Pandey, Rupesh Kumar, and S. S. Panda. Drilling of bone: A comprehensive review. Journal of clinical orthopaedics and trauma, Vol. 4, No. 1, pp. 15-30, 2013.
[13] V. Klika, Biomechanics in applications, BOD-Books on Demand, 2011.
[14] C. Jacobs, M. Pope, J. Berry, F. Hoaglund, A study of the bone machining process—orthogonal cutting, Journal of Biomechanics, Vol. 7, No. 2, pp. 131-136, 1974.
[15] S. R. Davidson, D. F. James, Drilling in bone: modeling heat generation and temperature distribution, J Biomech Eng, Vol. 125, No. 3, pp. 305-14, Jun 2003.
[16] Merchant, M. Eugene. Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip, Journal of applied physics, 16, No. 5, pp. 267-275, 1945.
[17] C. H. Jacobs, M. H. Pope, J. T. Berry, F. Hoaglund, A study of the bone machining process—orthogonal cutting. Journal of biomechanics, Vol. 7, No. 2, pp. 131-136, 1974.
[18] A. Bhattacharyya, I. Ham, Design of Cutting Tools-Use of Metal Cutting Theory, ASTME Publication, 1969.
[19] A. O. Tay, M. G. Stevenson, G. de Vahl Davis, P. L. B. Oxley. A numerical method for calculating temperature distributions in machining, from force and shear angle measurements,  International Journal of Machine Tool Design and Research, Vol. 16, No. 4, pp. 335-349, 1976.
[20] D. R. Carter, W. E. Caler, Cycle-dependent and time-dependent bone fracture with repeated loading, J. Biomech Eng, Vol. 105, No. 2, pp. 166-170, 1983.
[21] G. Boothroyd, W. A. Knight, Fundamentals of Metal Machining and Machine Tools, pp. 109-129, CRC Press Taylor & Francis, 2005.
[22] L. Kong, Y. Zhao, K. Hu, D. Li, H. Zhou, Z. Wu, B. Liu, Selection of the implant thread pitch for optimal biomechanical properties: A three-dimensional finite element analysis, Advances in Engineering Software, Vol. 40, No. 7, pp. 474-478, 2009.
[23] E. Fonseca, K. Magalhães, M. Fernandes, M. Pinotti Barbosa, G. Sousa, Numerical model of thermal necrosis due a dental drilling process,  Biodental Engineering II, Taylor & Francis Group, pp. 69-73,  2014.
[24] R. A. Eriksson, R. Adell. Temperatures during drilling for the placement of implants using the osseointegration technique, Journal of Oral and Maxillofacial Surgery, Vol. 44, No. 1, pp. 4-7, 1986.
[25] Z. H. Jin, M.D. Peng, Q. Li, The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: A finite element analysis, Journal of Dental Sciences, Vol. 15, No. 4, pp. 466-471, 2020.
[26] M. Nikazar, R. Kharrat, Application of Mathematics in Chemical Engineering, Vol 2, pp. 441-467, Amirkabir University of Technology Publication, 2002. (in Persian)
[27] A. P. Neisiani, N. Jamshidi, M.S. Bidabad, N. Soltani, Thermal numerical assessment of jawbone drilling factor during implantology, Journal of Dental Medicine, Vol. 28, No. 4, pp. 266-273, 2016. (in Persion).
[28] F. Ahmadi, R. Mohammadi, FEM investigation of drilling conditions on heat generation during teeth implantation, Journal of Computational and Applied Research in Mechanical Engineering, Vol. 10,No. 1,pp. 25-35, 2020.
[29] Y. X. Yang, C. Y. Wang, Z. Qin, L. L. Xu, Y. X. Song, H. Y. Chen, Drilling force and temperature of bone by surgical drill. In Advanced Materials Research, Vol. 126, pp. 779-784, 2010.
[30] R. V. Dahibhate, B. J. Santosh, I.S. Rajendra, Development of mathematical model for prediction of bone drilling temperature, Materials Today: Proceedings, Vol. 38, pp. 2732-2736. 2021.
[31] M. Sharawy, C. E. Misch, N.Weller, S. Tehemar. Heat generation during implant drilling: the significance of motor speed, Journal of Oral and Maxillofacial Surgery, Vol. 60, No. 10, pp. 1160-1169, 2002.