مقایسه استحکام کششی نمونه‌های چاپ سه‌بعدی شده به روش مدل‌سازی لایه نشانی ذوبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران

2 دانش‌آموخته کارشناسی، مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران

چکیده

فرآیندهای ساخت افزایشی دسته‌­ای از فرآیندهای تولید هستند که برای ساخت قطعات خاص در کمترین زمان ممکن مورد استفاده قرار می‌­گیرند. برخلاف روش ماشینکاری که با براده­‌برداری و به صورت کاهشی عملیات ساخت انجام می‌­شود، در روش ساخت افزایشی با اضافه نمودن یک لایه جدید به لایه‌های قدیمی چاپ شده، قطعه نهایی ساخته می‌­شود. در این مقاله به بررسی استحکام کششی نمونه‌­های تولید شده از جنس ABS پرداخته می‌­شود. سه پارامتر مورد بررسی اثر اندازه نمونه، اثر درصد تراکم و اثر الگوی چاپ بر رفتار تنش-کرنش قطعات می‌­باشد. سه نمونه با اندازه متفاوت، پنج نمونه با درصدهای مختلف تراکم و دو نمونه با الگوی چاپ متفاوت تولید شده‌­اند و پس از انجام آزمون کشش، رفتار منحنی تنش-کرنش قطعات با یکدیگر مقایسه شده‌­اند. نتایج آزمون کشش نشان داد که با افزایش اندازه نمونه، استحکام کششی قطعات کاهش می­‌یابد. همچنین با کاهش درصد تراکم، نیروی تحمل شده توسط نمونه و درصد ازدیاد طول قبل از شکست کاهش می­‌یابد و تفاوت قابل توجهی میان نمونه با تراکم صد درصد و سایر نمونه‌­ها وجود دارد. با مقایسه نسبت نیروی ماکزیمم بر جرم هر یک از نمونه‌­ها مشاهده می­‌شود که این نسبت برای نمونه­‌های متخلخل نزدیک به یکدیگر بوده، ولی این نسبت برای نمونه توپر در مقایسه با نمونه­‌های متخلخل 25 درصد بیشتر می­‌باشد. استحکام نمونه­‌های چاپ شده به روش نرمال نسبت به نمونه تولید شده با پروفایل­‌های هم‌­مرکز 9/13 درصد بیشتر است. همچنین کرنش شکست نمونه‌­های چاپ شده به روش پروفایل‌­های هم‌مرکز 48 درصد نسبت به کرنش شکست نمونه نرمال کاهش یافته  است.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Tensile Strength for 3D Printed Parts Fabricated by Fused Filament Fabrication (FFF)

نویسندگان [English]

  • Jalal Joudaki 1
  • Seyed Amirhosein Naghavi Alhoseini 2
1 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
2 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
چکیده [English]

Additive manufacturing is a new type of manufacturing process which is used for the fabrication of special parts in a minimum possible time. Unlike the machining processes in which the part is prepared by material removal, the parts are fabricated in additive manufacturing by adding a new layer to old printed layers. In this article, the tensile strength of printed specimens from ABS by Fused Filament Fabrication (FFF) will be evaluated. Size, in-fill density, and the print pattern are three process parameters that will be investigated. Three different size samples, five different in-fill density samples, and two samples with different patterns are printed and the stress-strain behavior of prepared samples was compared. The tensile test results show that the tensile strength of samples decreases by increasing the sample size. Also, by decreasing the in-fill density, the tensile load of samples and elongation decreases, and a considerable difference between the 100% in-fill density and other samples are observed. By comparing the ratio of maximum force to the mass of samples it was observed that this ratio is almost constant for non-solid samples but this ratio is 25% higher for the solid (100% in-fill density) sample compared to the non-solid samples.  The strength of the samples printed by the normal pattern is 13.9 % higher than the sample produced with concentric profiles. The failure strain of the sample produced with concentric profiles reduces by about 48% compared to samples printed by the normal pattern.

کلیدواژه‌ها [English]

  • 3D printing
  • Fused Filament Fabrication
  • Tensile Strength
  • Size Effect
  • In-fill Density
[1] T. N. A. T. Rahim, A. M. Abdullah, H. Md Akil, Recent developments in fused deposition modeling-based 3D printing of polymers and their composites, Polymer Reviews, Vol. 59, No. 4, pp. 589-624, 2019, doi: 10.1080/15583724.2019.1597883.
[2] M. Khosravi, S. M. Hosseini, M. Lakhi, Investigation of parameters affecting the roughness and cylindricality of holes in PLA parts made of 3D printing by fused deposition modeling process using response surface method, Journal of Solid and Fluid Mechanics, Vol. 11, No. 3, pp. 119-133, 2021, doi: 10.22044/jsfm.2021.2209. (in Persian)
[3] A. Gholizadeh Roshan, A. Zolfaghari, M. Shakeri, Investigation of physical and mechanical properties of 3D printed parts by using of ABS plastic filaments filled by alumina, Iranian Journal of Manufacturing Engineering, Vol. 7, No. 4, pp. 1-9, 2020. (in Persian)
[4] M. Hosseini Vajari, S. Dariushi, M. Behzadnasab, An experimental investigation on mechanical properties of 3D-printed bio-inspired sandwich panels based on silk cocoon geometry, Iranian Journal of Manufacturing Engineering, Vol. 8, No. 4, pp. 19-26, 2021. (in Persian)
[5] S. Abidaryan, A. H. Behravesh, M. Barmouz, S. K. Hedayati, Effect of infill percentage and raster angle in fused deposition modeling (FDM) process on shape memory properties of poly (lactic acid) and comparison with compression molding, Iranian Journal of Manufacturing Engineering, Vol. 7, No. 5, pp. 14-23, 2020. (in Persian)
[6] G. S. Sandhu, K. S. Boparai, K. S. Sandhu, Influence of slicing parameters on selected mechanical properties of fused deposition modeling prints, Materials Today: Proceedings, Vol. 48, No. 5, pp. 1378-1382, 2022, doi: 10.1016/j.matpr.2021.09.118.
[7] N. Vinoth Babu, N. Venkateshwaran, N. Rajini, S. O. Ismail, F. Mohammad, H. A. Al-Lohedan, S. Suchart, Influence of slicing parameters on surface quality and mechanical properties of 3D-printed CF/PLA composites fabricated by FDM technique, Materials Technology, Vol. 37, No.9, pp. 1008-1025, 2022, doi: 10.1080/10667857.2021.1915056.
[8] V. D. Prasada Rao, P. Rajiv, V. Navya Geethika, Effect of fused deposition modelling (FDM) process parameters on tensile strength of carbon fibre PLA, Materials Today: Proceedings, Vol. 18, No. 6, pp. 2012-2018, 2019, doi: 10.1016/j.matpr.2019.06.009.
[9] N. Naveed, Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM), Materials Technology, Vol. 36, No.5, pp. 317-330, 2021, doi: 10.1080/10667857.2020.1758475.
[10] C. M. S. Vicente, T.S. Martins, M. Leite, A. Ribeiro, L. Reis, Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polymers for Advanced Technologies, Vol. 31, pp. 501– 507, 2020, doi: 10.1002/pat.4787.
[11] P. Rezaeian, M. R. Ayatollahi, A. Nabavi-Kivi, S. M. J. Razavi, Effect of printing speed on tensile and fracture behavior of ABS specimens produced by fused deposition modeling, Engineering Fracture Mechanics, Vol. 266, pp. 108393, 2022, doi: 10.1016/j.engfracmech.2022.108393.
[12] H. B. Mamo, A. D. Tura, A. Johnson Santhosh, N. Ashok, Dommeti Kamalakara Rao, Modeling and analysis of flexural strength with fuzzy logic technique for a fused deposition modeling ABS components, Materials Today: Proceedings, Vol. 57, No. 2, pp. 768-774, 2022, doi: 10.1016/j.matpr.2022.02.306.
[13] A. D. Tura, H. G. Lemu, H. B. Mamo, Experimental investigation and prediction of mechanical properties in a fused deposition modeling process. Crystals, Vol. 12, No. 6, pp. 844, 2022, doi: 10.3390/cryst12060844.
[14] K. M. Agarwal, P. Shubham, D. Bhatia, P. Sharma, H. Vaid, R. Vajpeyi, Analyzing the impact of print parameters on dimensional variation of ABS specimens printed using fused deposition modelling (FDM), Sensors International, Vol. 3, pp. 100149, 2022, doi: 10.1016/j.sintl.2021.100149.
[15] M. Azadi, A. Dadashi, S. Dezianian, M. Kianifar, S. Torkaman, M. Chiyani, High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing, Forces in Mechanics, Vol. 3, pp. 100016, 2021, doi: 10.1016/j.finmec.2021.100016.
[16] R. Raj Mohan, R. Venkatraman, S. Raghuraman, Experimental analysis on density, micro-hardness, surface roughness and processing time of Acrylonitrile Butadiene Styrene (ABS) through fused deposition modeling (FDM) using Box Behnken design (BBD), Materials Today Communications, Vol. 27, pp. 102353, 2021, doi: 10.1016/j.mtcomm.2021.102353.
[17] M. Lay, N. L. N. Thajudin, Z. A. Abdul Hamid, A. Rusli, M. K. Abdullah, R. K. Shuib, Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding, Composites Part B: Engineering, Vol. 176, pp. 107341, 2019, doi: 10.1016/j.compositesb.2019.107341.
[18] R. Srinivasan, R. Rathish, P. R. Sivaraman, A. Pramod, G. Shivaganesh, Influential analysis of fused deposition modeling process parameters on the wear behaviour of ABS parts, Materials Today: Proceedings, Vol. 27, No. 2, pp. 1869-1876, 2020, doi: 10.1016/j.matpr.2020.03.808.
[19] M. Faes, E. Ferraris, D. Moens, Influence of inter-layer cooling time on the quasi-static properties of ABS components produced via fused deposition modelling, Procedia CIRP, Vol. 42, pp. 748-753, 2016, doi: 10.1016/j.procir.2016.02.313.
[20] I. Khan, N. Kumar, Fused deposition modelling process parameters influence on the mechanical properties of ABS: A review, Materials Today: Proceedings, Vol. 44, No. 6, 2021, pp. 4004-4008, doi: 10.1016/j.matpr.2020.10.202.
[21] S. Paul, Finite element analysis in fused deposition modeling research: A literature review, Measurement, Vol. 178, pp. 109320, 2021, doi: 10.1016/j.measurement. 2021.109320.
[22] A. Cano-Vicent, M. M. Tambuwala, Sk. S. Hassan, D. Barh, A. A. A. Aljabali, M. Birkett, A. Arjunan, Á. Serrano-Aroca, Fused deposition modelling: current status, methodology, applications and future prospects, Additive Manufacturing, Vol. 47, pp. 102378, 2021, doi: 10.1016/j.addma.2021.102378.
[23] ASTM D638-14, Standard test method for tensile properties of plastics, American Society for Testing and Materials: West Conshohocken, 2012.
[24] C. Z. Zhao, W. Q. Huang, J. X. Liu, P. R. Ren, Z. X. Zuo, K. J. Yan, An investigation on tensile and fatigue properties of cast Al-7Si-1.5Cu alloy applied in cylinder head considering size effect phenomenon, Materials Today Communications, Vol. 31, pp. 103271, 2022, doi: 10.1016/j.mtcomm.2022.103271.
[25] A. V. Sergueeva, J. Zhou, B. E. Meacham, D. J. Branagan, Gage length and sample size effect on measured properties during tensile testing, Materials Science and Engineering: A, Vol. 526, pp. 79-83, 2009, doi: 10.1016/j.msea.2009.07.046.
[26] F. A. Marandi, A. H. Jabbari, M. Sedighi, R. Hashemi, An experimental, analytical, and numerical investigation of hydraulic bulge test in two-layer Al–Cu sheets, ASME. Journal of Manufacturing Science and Engineering, Vol. 139, pp. 031005, 2017, doi:10.1115/1.4034717.
[27] Y. Hou, W. Zhang, X. Mi, H. Xie, X. Feng, G. Huang, L. Peng, Z. Yang, Different response mechanisms of yield strength and ultimate tensile strength in pure copper considering size effect, Materials Science and Engineering: A, Vol. 849, pp. 143443, 2022, doi: 10.1016/j.msea.2022.143443.