Study and investigation of cutting energy and chip formation in the grinding process of polyether ether ketone

Document Type : Original Article

Authors

1 Esfarayen University

2 KSF institute, HFU, Tuttlingen, Germany

3 Neyshabour University

Abstract

Polyether ether ketone has special attention due to its unique mechanical and chemical properties in the aerospace and medical engineering industries. One of the uses of this material is the manufacture of implants in the medical industry and its replacement with metals in the aerospace industry. The grinding process as one of the most important cutting process has high specific energy among the traditional methods. Specific energy is defined as the energy required to cut a unite volume of material. By calculating the cutting energy and comparing with the specific grinding energy (experimental), can determine the contribution of the chip formation energy to the plowing and frictional energy. The Differential scanning calorimetry (DSC) test and theoretical calculations showed that the amount of chip formation energy was 0.12 (J/mm3) while the experimental results showed that the grinding energy was 1.9 (J/mm3). This difference reflects the very high contribution of plowing energy in the grinding of this material. The ratio of heat of chip formation energy that enters the workpiece was calculated as 36%. Therefore, it can be stated that all the energy except 64% of the chip formation energy enters the workpiece.

Keywords

Main Subjects