Study on the effect of thickness of layers, temperature and speed of nozzle on circularity error and surface roughness of holes in parts produced during fused deposition modeling

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Faculty of Mechanics, Islamic Azad University North Tehran Branch, Tehran, Iran

2 Mechanical Engineering, Faculty of Mechanical Engineering, Islamic Azad University, North Tehran Branch, Iran

Abstract

Due to the increasing need of industries to prototyping with the highest accuracy and lowest cost, the application of rapid prototyping technology as a modern and rapid method has been considered to reduce the time between design to production and market to product. Fused deposition modeling is one of the most common methods in 3D printing and rapid prototyping, but the components produced in this way are usually of poor geometric accuracy and surface quality. Circularity error in the cavities is one of the important geometrical and tolerances errors. In this study, the experimental study the effect of process parameters such as layers thickness, temperature and speed of nozzle on the surface roughness and circularity error of the samples is investigated. The sample is a rectangular that has three holes in three different plates and the measurement of circularity error and surface roughness have been done in three directions and three different plates, respectively.The results showed that the lowest values were obtained for the surface roughness of the holes in the XY plane for a nozzle temperature 270 °C, printing speed 30 mm / s and layer thickness 0.2 mm. Also, the minimum value for the circularity error of the holes was obtained on the XY plate for the nozzle temperature 210 °C, printing speed 30 mm / s and layer thickness 0.4 mm. During the response surface optimization, the model optimized value was 1.174 μm for the surface roughness and 0.114 mm for the circularity error.

Keywords

Main Subjects