Experimental Investigation of Aluminum Foam Sandwich Panels under Quasi-static Loading

Document Type : Original Article

Authors

1 M.A student/Department of Mechanical Engineering/ Tafresh University/Central Province/ Iran

2 Faculty of Mechanical /Department of Mechanical Engineering/Tafresh University/Central Province/Iran

3 Faculty of Mechanical & Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran

Abstract

In this paper, the specific absorbed energy (SAE) and mechanical properties of aluminum foam sandwich panels with composite surfaces under quasi-static loading were studied experimentally. The core of the samples are aluminum foam blocks with thicknesses of 1 cm, 2 cm and 3 cm. 2D-woven E-type glass fibers with surface density of 200 Kg/m2 and epoxy resin were used for fabrication of the surfaces. From adhesion of resin was used for bonding to the core and surface. the effect of changing the thickness and density of the core, the composite surface, the surface on one side of the core, the multilayered core having an equivalent thickness, the effect of changing the density of the aluminum foam core is studied and SAE values of the samples were compared. The results showed that increasing thickness of the aluminum foam from 2 cm to 3 cm increased the SAE between 12% and 26%. The use of composite surface reduces the amount of SAE. The multilayer core increased the SAE in the linear elastic zone and at the other force levels decreased the maximum of 6% of the SAE. Moreover, increasing the core density increased the degradation force and reduced the amount of displacement.

Keywords

Main Subjects